VBD-1000® - Vacuum Dryer®

This document is the Original Instructions manual of the Maguire VBD-1000® Vacuum Dryer.

Copyright © 2017 Maguire Products Inc.

The information contained within this manual including any translations thereof, is the property of Maguire Products Inc. and may not be reproduced, or transmitted in any form or by any means without the express written consent of Maguire Products Inc.

To every person concerned with use and maintenance of the Maguire VBD-1000® it is recommended to read thoroughly these operating instructions. Maguire Products Inc. accepts no responsibility or liability for damage or malfunction of the equipment arising from non-observance of these operating instructions.

To avoid errors and to ensure trouble-free operation, it is essential that these operating instructions are read and understood by all personnel who are to use the equipment.

Should you have problems or difficulties with the equipment, please contact Maguire Products Inc. or your local Maguire distributor.

These operating instructions only apply to the equipment described within this manual.

Manufacturer’s Contact Information

Maguire Products Inc.
11 Crozerville Road
Aston, PA. 19014

Phone: 610.459.4300
Fax: 610.459.2700

Website: http://www.maguire.com

Email: info@maguire.com
Accuracy of this Manual

We make every effort to keep this manual as correct and current as possible. However, technology and product changes may occur more rapidly than the reprinting of this manual. Generally, modifications made to the dryer design or to the operation of the software are not reflected in the manual for several months. The date at the footer of this manual will indicate approximately how current this manual is. Likewise, your Dryer may have been produced at an earlier time and the information in this manual may not accurately describe your Dryer since this manual is written for the current line of Dryers in production (as of the date in the footer). We always reserve the right to make these changes without notice, and we do not guarantee the manual to be entirely accurate. If you question any information in this manual, or find errors, please let us know so that we may make the required corrections or provide you with accurate information. Additionally, we will gladly provide you with an updated copy of any manuals you need at any time. We welcome comments and suggestions on ways we can improve this manual.

For additional information, or to download the latest copy of this manual or any other Maguire manual, please visit our website or contact us directly.

On the Web at: www.maguire.com

Maguire Products Inc. Maguire Europe
Main Headquarters Tame Park
11 Crozerville Road Tamworth
Aston, PA 19014 Staffordshire
Tel: 610.459.4300 B775DY
Fax: 610.459.2700 UK
Email: info@maguire.com Tel: +44 1827 265 850
Fax: +44 1827 265 855 Email: info@maguire-europe.com

Maguire Products Asia PTE LTD Maguire Italy
15 Changi North Street 1 Via Zancanaro 40
#01-15, I-Lofts 35020 Vigorovea (PD)
Singapore 498765 Tel: +39 049 970 54 29
Fax: 65 6542-8577 Fax: +39 049 971 18 38
Email: magasia@maguire-products.com.sg Email: info@maguire-italia.it

Please e-mail comments and suggestions to: support@maguire.com
Table of Contents

INSTALLATION ... 8

- Dryer Assembly ... 12
- Engaging the Load Cells ... 15
- Dryer Connections .. 20
- Compressed Air Connection ... 20
- Electrical Connection .. 21

Operating Station Overview .. 23

- Description of Menu Options ... 30
- Setup Menu Options Explained ... 31
- Parameters Explained .. 34
- Changing Parameters ... 42
- Communication Setup ... 43

Start-Up and Operation .. 24

- Start Up and Operation Instructions ... 24
- What is happening when the Dryer is Running .. 26
- Shutdown – Immediate or Planned ... 27
- Recommended Drying Temperatures ... 28
- Energy Saver Mode ... 33

Maintenance ... 44

- Drain and purge Air Filter / Regulator ... 44
- Air Pressure Adjustments ... 44
- Cleanout Procedure .. 45
- Loadcell Calibration .. 49
- Alarms - Cause and Solution .. 52
- Logs and Print Outputs .. 58
- Dryer Firmware Updates ... 63

General Information .. 64

- Technical Specifications ... 67
- Theory of Operation / Performance .. 67
- Warranty .. 68
- Recommended Spare Parts List ... 69
- Wiring Diagrams ... 70
- Declaration of Conformity .. 72
- Technical Support / Contact Information ... 73
Warranty – Exclusive 5-Year

MAGUIRE PRODUCTS OFFERS THE MOST COMPREHENSIVE WARRANTY in the plastics auxiliary equipment industry. We warrant each MAGUIRE VBD – Vacuum Dryer manufactured by us to be free from defects in material and workmanship under normal use and service; excluding only those items listed below as 'excluded items'; our obligation under this warranty being limited to making good at our factory any Dryer which shall, within FIVE (5) YEARS after delivery to the original purchaser, be RETURNED intact to us, transportation charges PREPAID, and which our examination shall disclose to our satisfaction to have been thus defective; this warranty being expressly in lieu of all other warranties expressed or implied and of all other obligations or liabilities on our part, and MAGUIRE PRODUCTS neither assumes nor authorizes any other persons to assume for it any other liability in connection with the sale of its Dryers.

This warranty shall not apply to equipment repaired or altered outside MAGUIRE PRODUCTS INC. factory, unless such repair or alteration was, in our judgment, not responsible for the failure; nor which has been subject to misuse, negligence or accident, incorrect wiring by others, or installation or use not in accord with instructions furnished by Maguire Products, Inc.

Our liability under this warranty will extend only to equipment that is returned to our factory in Aston, Pennsylvania, PREPAID.

Please note that we always strive to satisfy our customers in whatever manner is deemed most expedient to overcome any problems they may have in connection with our equipment.
SAFETY WARNINGS

HOT SURFACES:

WARNING

As with all dryers, there are HOT SURFACES to avoid. Temperatures can reach 350F, (180C).

Typically, these surfaces are not at dangerous temperatures, however all hot surfaces should be avoided.

Warning Label indicate:

HOT SURFACES

USE CAUTION when removing and installing canisters.

USE GLOVES

DO NOT REACH into the dryer enclosure.

RISK OF SHOCK:

DANGER

Disconnect power supply before servicing the Dryer.

GETTING STARTED: PROCEED TO: INSTALLATION - NEXT PAGE
Installation

Transport and Setup

Shipment

The VBD-1000 Dryer is shipped as separate components that require re-assembly.

The 3 main sections are:

Retention Hopper Assembly (A) – Identified by the recessed pneumatics cabinet on the front panel and the removable Retention Hopper on the lower slide rail. Weight is 1920 lb (871 kg)

Vacuum Chamber Assembly (B) – Identified by the control panel on the front panel, the electrical cabinet on the left side and the hanging vacuum chamber. Weight is 1920 lb (871 kg).

Heating Hopper Assembly (C) – Identified as a tall heating hopper. Weight is 350 lb (159 kg)

Optional Base Frame (D) – a sub frame that elevates the Retention Hopper Assembly 16 inch allowing material to be convey from the base of the VBD Dryer. Weight of the Base Frame is 1303 lb (591 kg)

Other smaller components will be included. An optional mounting base section may be included.

Lifting and Moving components of the Dryer

Ensure your lifting equipment is rated to lifting the weight of the individual sections of the VBD-1000.

The three main sections of the VBD-1000 Dryer are shipped with Forged Eye Bolts to be used specifically as lifting points. When lifting the Retention Hopper Assembly (A) and the Vacuum Chamber Assembly (B), utilize all 4 Forged Eye Bolts to distribute the weight evenly. The Retention Hopper Assembly uses two Forged Eye Bolts and should be lifted using both Forged Eye Bolts. The Forged Eye Bolts must be removed from the Retention Hopper Assembly (A) BEFORE lowering the Vacuum Chamber Assembly (B) into place.
Overall layout and Dimensions
Heating Hopper

Main Power Switch

Operator Panel

Vacuum Chamber

Retention Hopper
Dryer Assembly

Optional Base Frame

The Base Frame is used to raise VBD’s Retention Hopper off of the floor. Weight of the Base Frame is 1303 lb (591 kg). Note: If the VBD is to be installed so that material is gravity fed out of the bottom of the Dryer, then this Base Frame is not necessary.

Level the Base Frame - If the Base Frame is to be used, it must be leveled at the installation location. The Base Frame of the VBD 1000 can be leveled two different ways. Leveled using the 4 leveling feet or by shimming the frame to the floor.

WARNING

If using the leveling feet, make sure the surface that the VBD 1000 will be install on can support the weight of the VBD at 4 corners. If the floor cannot support this weight in 4 small footprints, use leveling shims on the frame, not the leveling feet.

IMPORTANT

When adjusting the leveling feet, keep the frame as close to the floor as possible. Over extending the threads below the frame is not recommended for stability reasons.

Installing Retention Hopper Assembly (Section A)

Set the 6 spacers at the locations shown below.

If using the Base Frame, lower the Retention Hopper Assembly onto the Base Frame. Secure the Retention Hopper Assembly to the Base Frame using the supplied hardware. The Retention Hopper Assembly is secured to the Base Frame using (10) 1/2-13 grade 8 bolts.

If the Base Frame is not used – Lower the Retention Hopper Assembly (Section A) into place. The Retention Hopper Assembly must be leveled BEFORE installing the next section.
Installing Vacuum Tank Assembly (Section B)

Rigging note: Use the four collar eyebolts to raise section B onto section A of the VBD.

Lower the Vacuum Tank Assembly (Section B) onto the Retention Hopper Assembly. Align the enclosed side of each section (as shown in image at right). Align the bolt holes of each section.

Remove the rear panels of Retention Hopper Assembly (A) and Vacuum Tank Assembly (B) to gain access to the connections that need to be made within the enclosure. Install the 10 1/2-13 grade 8 bolts and tighten.

Install the Heating Hopper

Rigging note: Use the two collar eye bolts to raise the hopper onto section B of the VBD.

Using the two eye bolts, raise the Heating Hopper on top of section B of the VBD dryer. Position the Hopper so that the front hatch faces the same side of the dryer as the VBD’s control panel. Install the 10 1/2-13 grade 8 bolts and tighten.

Connect RTD Sensors and Air Lines

After installing the Heating Hopper, located the upper sheet metal panel with the slotted holes. Remove the button head screws and bring the three air lines and 3 sensor cables through the slotted holes. Each sensor cable is labeled for the specific slots. Air lines are labeled yellow, white and blue. Also bring the rubber grommets through the sheet metal and install the grommets in the slot to protect the wires and air lines. Connect the air lines, Connect the sensor cables and reinstall the sheet metal panel.
Installing the Upper Vacuum Gate

Note: If your Upper Vacuum Slide Gate is already installed from factory, skip this step.

If the VBD-1000 Upper Vacuum Gate was shipped detached from the VBD-1000 it must be installed after the Heating Hopper is installed.

Items with this assembly:
- Upper Vacuum Gate
- Retainer Bracket
- two 1/4-20 1/2" button head screws

The Upper Vacuum Gate will install from the rear of the Dryer. Locate the slot on the mount ring at the very top of the Vacuum Tank. See photo at right.

With the Slide Gate facing up, slide the Upper Vacuum Gate assembly into the slot on the mount ring as shown in the photo to the right. Slide the Upper Vacuum Gate onto the mount ring until it fully seats into the slot. It may be helpful to slide the Upper Vacuum Gate left and right as it is installed.

Note: To fully seat the Vacuum Gate onto the mount ring, the tab in the inner arch of the Upper Vacuum Gate must go into the recessed hole of the mount ring on the Vacuum Chamber.

From the front side of the Dryer, install the Retaining Bracket onto the Upper Vacuum Gate and fully into the slot on the mount ring and secure it using the two 1/4-20 1/2" button head screws.

Install the two 5/32 (4mm) airlines onto the Upper Vacuum Gate air cylinder. The shorter line will connect to the air cylinder fitting closest to the slide gate.
Engaging the Load Cells

The Load cells are disengaged for shipping and must be engaged for proper operation of the VBD-1000 Dryer. There are two sets of load cells: the Vacuum Chamber load cell and the Retention Hopper load cell pair.

Vacuum Chamber Load Cell

The Vacuum Chamber load cell is located between the Vacuum Chamber and the Vacuum Chamber Assembly (B).

To engage the load cell, turn the load cell lifting bolt down until it engages the load cell located below. Continue turning until the Vacuum Chamber hanger is lifted 1/4 inch (6mm) off of the sliding rail.

Retention Hopper Load Cell Pair

The Retention Hopper load cell pair is located in front of and below the Retention Hopper.

To engage the Retention Hopper load cell pair, remove the packaging straps from the Retention Hopper Lifting Lever. Lower the Retention hopper onto the load cell by pressing the lever back and down. This will engage the Retention Hopper lower frame onto the load cell pair.

When the Retention Hopper Lifting Lever is in its upright position, the lever's cams lift the weigh off of the load cell pair and allow the Retention Hopper to be pulled out for servicing and cleaning purposes.
Heating Hopper Dump Valve Air Lines

There is one white and one blue 5/32 inch air line, two RTD thermometer cables and one sensor wire (not pictured) bundled within the VBD-1000 enclosure for safety during shipping of the VBD-1000. The air lines and cables must be brought through the enclosure using the predrilled slotted keyholes in the top panel.

To install remove the top panel and locate the air lines and RTD thermometer cables. On each air line and wire is a rubber grommet. Slide the rubber grommet into the slotted keyhole in the sheet metal, then re-install the top panel.

Test air line orientation: connect air supply to VBD-1000. With the VBD power turned off, the air cylinder should be extended as shown in photo to the right. Air cylinder is extended closing the butterfly valve inside the base of the hopper.
Connect RTD Thermometers

The RTD thermometer cables are terminated on one end with a CPC connector. The Inlet RTD cable is marked with a red band. This is the shorter of the two cables. Connect the cables as shown with the red banded cable connecting to the CPC connector with the matching red band.

Secure the Heating Hopper Inlet RTD thermometer to the side heat inlet of the heating hopper. Secure the cable to frame of the heating hopper.

Route the longer RTD thermometer cable up to the exhaust port on the top of the heating hopper and secure the RTD thermometer as shown. Secure the cable to frame of the heating hopper.

Install Heating Hopper Level Sensor and Bracket

Install the Heating Hopper bracket and sensor on top of Heating Hopper (as shown). Located the sensor cable that exits the top of the VBD Heating Hopper and attach the sensor cable to the sensor.
Dryer Internal Assembly

If your Dryer has been shipped with the Retention Hopper Assembly and the Vacuum Tank Assembly together as one shipment (sections A and B in the diagrams), then the Dryer Internal Assembly instructions are not necessary as they are pre-assembled.

Remove the rear panels of Retention Hopper Assembly (A) and Vacuum Tank Assembly (B) to gain access to the connections that need to be made within the enclosure.

Summary of internal connections:

- Heating Hopper Heater connected to blower outlet.
- Power Junction Box Plug
- Purge Air Solenoid Valve Electrical Plug
- Electrical Field Joints (Color Coded)
- ¾ inch Purge Line
- 5/32 inch air lines

Install the Heating Hopper Heater

The Heater a polished steel 6-inch cylinder that is pre-wired and secured within the cabinet during shipping. This heater must be attached to the outlet of the blower using the attached 6-inch clamp. First loosen the clamp attached to the blower’s output. Leave the clamp on the blower. Then remove the shipping material securing the Heating Hopper Heater.

Carefully rest the Heater on top of the blower output so that the heater rests directly on the blower’s 6-inch output. Tighten the clamp firmly to secure the Heater to the blower.

Connect the Power Junction Box – Located at the top of the Retention Hopper Assembly. Plug in and twist to lock the connection.
Connect the electrical plug Purge Air Solenoid Valve
Located at the top and rear of the Retention Hopper Assembly. Use a flat head screwdriver to secure the connection.

Connect the Electrical Field Joints – Located at the top and towards the rear of the Retention Hopper Assembly. Each connection is color-coded (Black, Red, Green, Yellow, White). Plug in and twist to lock each connection.

Connect the ¾ inch Purge Line – Located at base of the Vacuum Tank, this is a Cam and Groove connection.

Connect the 2 gray 5/32 inch air lines – This pair of gray air lines connects the air cylinder located on top of the Retention Hopper to the inner wall of the Vacuum Tank Assembly. Each air line is marked to indicate which port it should be plugged into.
Dryer External Connections

Once assembled, installation requires electrical, pneumatic air line connection and intake and output material lines to be connected.

Compressed Air Connection

Connect an air supply to the air regulator’s IN port using a male 1/2 ” NPT fitting.

An operating air pressure of 80 psi (5.5 bar) while the vacuum generator is running is required for proper operation of the Dryer.

If your air supply has oil in it, add an oil separator (coalescing filter). Oil in the air will combine with dust drawn from the vacuum tank forming a paste inside the vacuum generator. It will stop working and require cleaning.

Observe the air pressure gauge to be sure the pressure maintains 80 psi (5.5 bar) while the vacuum generator is running as you check and adjust the regulator. If pressure drops below 80 psi, adjust the regulator. If the pressure cannot be maintained at 80 psi (5.5 bar) while the vacuum generator is running, then the air supply line is not adequate.

Do not supply Dryer with a lubricated air supply. Damage to Dryer may result. Use only a clean, dry, oil-free air supply.
Electrical Connection

RISK OF INJURY!
Only qualified technicians should make electrical connections.

Connect Main Power

The electrical cable located on the left side of the Dryer on the power box supplies the power to the Dryer. Within the cable is four wires. Three of the wires are black and labeled with a number: 1, 2, and 3. The fourth wire is a green/yellow wire and is the ground wire.

Connect power to a properly fused disconnect.

See page 71 for the High Voltage Wiring Diagram

THREE PHASE: 60 cycle 480 volts
or 50 cycle 400 volts

Confirm Correct 3-Phase Electrical Connection

THREE PHASE Unit - CONFIRM proper 3-Phase power connection by following these instructions:

Turn power on using main power switch.

On the outside of the electrical box below the power switch is a red 3-Phase indicator light.

If 3-Phase power is correctly connected, the controller will power up and the red indicator light will NOT be lit.
Temperature Sensor Locations

T1 – Heating Hopper Air Inlet
 T1s – Heating Hopper Air Inlet Temperature Setting
 T1a – Heating Hopper Air Inlet Temperature Actual

T2 – Dry Purge Air Temperature
 T2s – Dry Purge Air Temperature Setting
 T2a – Dry Purge Air Temperature Actual

T3 – Heating Hopper Air Outlet Temperature
 T3s – Heating Hopper Air Outlet Temperature Setting
 T3a – Heating Hopper Air Outlet Temperature Actual

T4 – Material Outlet Temperature (optional)
 T4s – Material Outlet Temperature Setting
 T4a – Material Outlet Temperature Actual
Operating Station Overview

Control Panel Overview

Display Screens – The VBD control panel has two screens. The upper, red display shows Actual Temperature or Set-point Temperature. The lower, blue display shows various running mode information or setup and configuration information.

Control Panel Power Powers on the control panel (main power must be ON.) Also used to exit or cancel out of any menu option and return to the top level screen.

Top Level Menu:
- **Run Mode** - See page 24
- **Clean Out**
- **Manual Operation** - See page 30

Enter selects the highlighted menu option.

Select toggles between 4 different screen sets:

Status Screen
The Status Screen Displays:
- **T1a** - Actual Air Temperature into the heating hopper
- **T1s** - Air Temperature set-point
- **ADV** - Access to Advance Mode

Setup Mode
Access to advanced set up information. See Page 31

Material Mode
Displays the status of the retention hopper’s material exit valve. This screen also allows control of the retention hopper material exit valve with the options: Closed, Open, Remote. For remote operation, see Remote Process Material Valve Switch (IN9) on the Low Voltage Wiring Diagram on page 70.

Alarm Log
Displays the alarm log. See page 58.

Arrow Buttons – Navigate menus, make adjustments. is also used to silence the alarm.

Navigating to **BACK** and pressing **ENTER** exits the current menu and back one level.
Start Up and Operation

This section will help you understand what the dryer is doing during operation from a cold start. There are 3 concurrent operations. Heating, Vacuum and, Retention. Cold startup begins with Preheat. Preheat only occurs before the first cycle of the dryer’s initial startup, otherwise each cycle begins with material heating. The vacuum operation pulls and holds a vacuum on the material for at least the Vacuum Time Set-point (or longer if material remains in the Retention Hopper). The Retention operation holds the dried material in the Retention Hopper, blanketing the material with hot, dry air, until the material is conveyed away.

Important: Inspect the VBD, verify that machine is clear of all material from all tanks, heating hopper, Vacuum Chamber and Retention Hopper. To facilitate a Clean Out, use the Clean Out function accessible from the home screen.

Startup and Operation Instructions

1. **ENSURE HATCH IS CLOSED.** There is a hatch located on the upper Heating Hopper. Ensure all 3 latches are closed. Also be sure the removable Lower Retention Hopper is in place.

2. **Load material into the Upper Heating Hopper.** Wait for the Heating Hopper to fill with material before starting the Dryer.

3. **Turn on Main Power** by rotating the 60 AMP Main Disconnect Handle to the Red ON position. This powers up the VBD-1000 Dryer.

 On initial power up of the VBD, the Control Panel powers ON automatically. If the main power is ON but the Control Panel is OFF, press and hold the Red Power Button located on the Control Panel for 2 seconds. (Note: The VBD’s Control Panel can be powered OFF without powering down the Main Power by pressing and holding the Red Power button for 4 seconds).

4. After material has been loaded into the Heating Hopper, select **Run Dryer** and press the **ENTER** button.
5. The display will show the Pre-Start screen. On this screen is:

Setpoint Temp – This is heat hopper inlet temperature. By the end of the preheat cycle time, all material in the Heating Hopper will be heated to this temperature. By default, the Setpoint temperature is set to 150 °F. See Recommended Heat Temperatures on page 28 for general temperature recommendations or contact the material manufacturer.

Preheat Time – This is the duration of heating from a cold start.

Vacuum Time – This is the minimum duration of a vacuum cycle. Actual vacuum cycle times will vary according to the throughput. The default vacuum time is 20 minutes. In the vast majority of drying operations, this time is adequate and does not need to be adjusted. Special circumstances may require different vacuum times. Please consult a Maguire Dryer Technical for additional information.

By default, START is selected (location of cursor). If the settings you desire have been entered previously, simply pressing ENTER once more will start the machine. Otherwise use the arrow buttons ↑↓ to navigate to the desired settings for adjustment, then press ENTER. The display will highlight the adjustable digit.

Use the arrow buttons ↑↓ to adjust the setting. Press ENTER to advance through the digits and to complete the setting adjustment.

6. When the display is no longer in the Edit Mode (highlighted setting), press ↓ to toggle the selection to START. With START selected, press the ENTER button to start the dryer.

7. The display will show that the dryer is running in PREHEAT mode and display the following:

T1a - Actual heating hopper inlet temperature
T1s - Heating Hopper inlet temperature setpoint.
VTa - Elapsed vacuum time.
VTs - Vacuum Time setpoint.
VAC - Actual vacuum chamber pressure.
What is happening when the dryer is running:

During the Pre-heat operation material in the heating hopper is brought up to temperature (T1s). Preheat time is determined by the specified Preheat Time on the Pre-Start screen (timed preheat, default 60 minutes) or by the Preheat Setup Auto option (See page 32), which sets an inlet to outlet temperature delta and a minimum preheat time.

After pre-heat, approximately one third of the material in the heating hopper is dispensed into vacuum chamber, and the first vacuum cycle begins. Each vacuum cycle has a minimum vacuum time, set on the Pre-start screen, or the main run screen (VTs). (default is 20 minutes).

The loader loads the Heating Hopper with new material as the Vacuum Chamber receives the heated material and heating cycle begins concurrent to vacuum cycle (the first vacuum cycle is timed). The new batch of material in the upper portion of the heating hopper will take less time to heat. Minimum time in the heating is dictated vacuum time.

After first vacuum cycle, material is then dispensed into retention hopper ready for use. Material in the retention hopper is blanketed with dry air.

The rate of consumption of dried material from the retention hopper ultimately dictates the amount of time that the material will be preheated and under vacuum. **Examples:** If it takes 30 minutes to deplete the retention hopper, the vacuum cycle will run past its 20 minute setpoint (pre-start screen) to 30 minutes. This is normal operation. However if the retention hopper is depleted in 15 minutes and the vacuum time is set to 20 minutes, there will be a 5 minute window where no material is available. This indicates that the throughput of the dryer has been exceeded. If the Throughput Alarm is enabled (Alarm Setup), a Throughput Alarm (Alarm Code 20) will be triggered.
Shutdown – Immediate or Planned

Immediate Shutdown

At any point during the preheat cycle or standard operation (operation after initial preheat cycle), pressing the red button will bring up a Shutdown Options screen and display:

Immediate Shutdown – Fast but controlled shutdown of the heater, blower, the vacuum system and the purge system.

Skip Preheat – Skips the preheat allowing material to immediately pass down to the Vacuum Chamber (example: material has already been heated and dryer has been taking offline briefly and powered back on).

Cancel - Exits the shutdown prompt screen, doing nothing.

Planned Shutdown - Shutdown during post-preheat operation

Pressing the red power button once during post-preheat operation prompts the operator with these options:

Planned Shutdown – Planned Shutdown will run to run the dryer and process the material in the Vacuum Chamber and the Retention Hopper until they are empty. Selecting Planned Shutdown will display the Cooldown option.

Cooldown (ON/OFF) – When enabled Cooldown will gradually bring down the temperature of the material in the heating hopper to the specified temperature (Cooldown Temp) over the specified time period (Cooldown Time).

To adjust the Cooldown Temperature and Cooldown Time use the arrow buttons ▲ ▼ to adjust the setting. Press ENTER to advance through the digits and to complete the setting adjustment.

Press the ▼ to scroll down to Shutdown to continue with the shutdown. Press the ENTER button to proceed with the shutdown.

Pressing the red power button during a Planned Shutdown will display the Immediate Shutdown Screen allowing initiation of an immediate shutdown of the dryer.

Immediate Shutdown – Fast but controlled shutdown of the heater, blower, the vacuum system and the purge system.

Cancel - Exits the shutdown prompt screen, doing nothing.
8. **ADV** (Advanced) - Selecting ADV (advanced) will display additional information such as readings of all RTD thermometers, vacuum time elapsed, absolute pressure in the Vacuum Chamber, blower drive frequency. ADV also allows an option to abort preheat and proceed into vacuum cycle. (Aborting the preheat cycle does not shut down the machine).

Advanced scrolls through 4 screens. To move to the next screen, use the ▲▼ buttons to navigate.

Fill Weight – The desired weight of material to be dispensed into the Vacuum Chamber.

Vac Cham. - Current material weight in Vacuum Chamber.

Ret. Hopp. - Current material weight in Retention Hopper.

Thruput - Calculated throughput, weight per hour.

Totalizer - Calculated total of all cycles since last clear of totals.

Last Cycle * - Total time to process a completed batch of dry material.

Cycle Count * - Total number of cycles since start button was pressed.

Fill Time * - Total time to fill the Vacuum Chamber.

T1 - Show actual temperature of the heating hopper inlet. as well as heating %.

T2 - Show Actual temperature of the heating hopper outlet.

T4 - Show Actual temperature of the retaining hopper.

* These advanced menu options can be turned on / off in the DISPLAY SETUP menu.
Recommended Drying Temperatures

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>FINAL MOISTURE % *</th>
<th>DRYING TEMPERATURE** °C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>0.10</td>
<td>80 - 85</td>
<td>180 – 190</td>
</tr>
<tr>
<td>ABS/PC</td>
<td>0.02</td>
<td>100</td>
<td>210</td>
</tr>
<tr>
<td>LCP</td>
<td>0.02</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>PA</td>
<td>0.20 - 0.10</td>
<td>80 - 85</td>
<td>180 – 190</td>
</tr>
<tr>
<td>PBT</td>
<td>0.02</td>
<td>125</td>
<td>250</td>
</tr>
<tr>
<td>PC</td>
<td>0.02</td>
<td>125</td>
<td>250</td>
</tr>
<tr>
<td>PC/PBT</td>
<td>0.02</td>
<td>125</td>
<td>250</td>
</tr>
<tr>
<td>PEEK</td>
<td>0.20 - 0.10</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>PEI</td>
<td>0.02</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>PES</td>
<td>0.05 - 0.02</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>PET (Molding Grade)</td>
<td>0.010</td>
<td>150-180</td>
<td>300-350</td>
</tr>
<tr>
<td>PET (Preform, Extrusion)</td>
<td>0.005</td>
<td>150-180</td>
<td>300-350</td>
</tr>
<tr>
<td>PMMA (Acrylic)</td>
<td>0.02 - 0.04</td>
<td>79</td>
<td>175</td>
</tr>
<tr>
<td>POM (Acetal)</td>
<td>0.20 - 0.10</td>
<td>80 - 110</td>
<td>180 – 230</td>
</tr>
<tr>
<td>PPO</td>
<td>0.02</td>
<td>100 - 120</td>
<td>210 – 250</td>
</tr>
<tr>
<td>PPS</td>
<td>0.02</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>PUR</td>
<td>0.02</td>
<td>125 - 140</td>
<td>260 – 280</td>
</tr>
<tr>
<td>PSU</td>
<td>0.02</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>SAN</td>
<td>0.20 - 0.10</td>
<td>80</td>
<td>180</td>
</tr>
</tbody>
</table>

* Final moisture content as recommended by the raw material manufacturer.

** Drying temperature as recommended by the material manufacturer.

Drying is accomplished when all material reaches the proper temperature, and is then placed under sufficient vacuum for a sufficient period of time.

Measurement of moisture content of material, both prior to and after drying, is accomplished by using a moisture analyzer.
Description of Menu Options

Select Mode (Top Level Menu)

Run Dryer - See Operation on page 24.

Clean Out – Clean Out opens all valves and allows for material evacuation and cleanout.
- Dump Heat Hopper – Opens the Vacuum Tank Fill Valve, drains the Heating Hopper.
- Dump Vacuum Chamber – Opens Vacuum Chamber dump valve, draining Vacuum Chamber
- Dump All – Opens both the Vacuum Tank Fill Valve and Vacuum Chamber dump valve

Manual Operations – Options that allow direct control over specific outputs.

Operate Outputs
- Alarm Audio – OFF/ON – Operates audible alarm.
- Alarm Strobe – OFF/ON – Operates strobe.
- Dry Purge Supply – CLOSED/OPEN of dry purge supply air valve
- Vac Gate Upper – OPEN/CLOSED – Material gate above the vacuum tank.
- Vac Gate Lower – OPEN/CLOSED – visible disk-shaped gate below the vacuum tank.
- Vac Cham Fill – OPEN/CLOSED – Gate located at the base of the heating hopper.
- Vac Cham Dump – OPEN/CLOSED – Internal gate (not visible) located at the base of the vacuum tank.
- Vac Gen Supply – OPEN/CLOSED – Vacuum generator supply. When operating, the vacuum generator supply pulls a vacuum on the vacuum tank.
- Vac Gen Check – OPEN/CLOSED – Vacuum generator check valve located on the vacuum generator. Holds the vacuum on the vacuum tank.
- Vac Cham Purge – OPEN/CLOSED – Located below the vacuum generator. When open the vacuum on the vacuum tank is released.

HH Heater Test – Operates the heater and blower that supplies heat to the Heating Hopper.

Purge Heater Test - Tests the Purge Heater

Blower Test - Tests the Blower

Vacuum Test - Tests the Vacuum

Input Status – Shows status of various inputs
- Blower – OFF/ON
- Level – Heating Hooper Level (0-100%)
- Pressure – LOW/OK
- VAC – Vacuum Chamber absolute pressure (mmHg)
- Primary OT – Primary Heater temperature switch - OK/OVERTMP
- Purge OT - Purge Heater temperature switch - OK/OVERTMP
- Remote PMV – Remote process material valve status – ON/OFF
- VC LC – Raw counts of the Vacuum Chamber loadcell
- RH LC - Raw counts of the Retention Hopper loadcell
- T1 – Heating Hopper inlet temperature
- T2 – Dry Purge Air temperature
- T3 – Heating Hopper Outlet temperature
- T4 – Optional Material Exit temperature
Setup Menu

The Setup Menu is accessed by pressing the Select button and choosing the Wrench mode.

<table>
<thead>
<tr>
<th>Press:</th>
<th>to toggle the Mode Selection to the Wrench Icon.</th>
<th>Display will show:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter:</td>
<td>the 5-digit password. (Default password is 22222). Use the ▲ ▼ buttons to adjust the digit. Press ENTER to move to the next digit and to finish.</td>
<td>SETUP ENTER PASSWORD _ _ _ _ _</td>
</tr>
<tr>
<td>Press:</td>
<td>the ▼ button several times to move down to the desired option. Press ENTER to select that Setup option for modification.</td>
<td>SETUP ► Alarm Setup</td>
</tr>
</tbody>
</table>

Setup Menu Option Description / Options

Alarm Setup

Material Shortage Alarm (labeled "Material")

- **WARN:** In the event of a material shortage, activate the audible alarm and strobe light but still run the dryer.

- **SHUTDOWN:** In the event of a material shortage, activate the audible alarm and strobe light and automatically initiate a planned shutdown. Audible alarm with sound for 15 seconds and the strobe will flash until the dryer is completely shut down.

- **OFF:** Disables the Material Shortage alarm

Throughput Alarm (labeled "Thruput")

- **ON:** If the Throughput alarm is enabled, the alarm will sound if the material in the Retention Hopper is used faster than the dryer can produce dried material. (Material level reaches RTL parameter before the Vacuum Time Setting expires VTS parameter).

- **OFF:** Disables the Throughput alarm

Auto-Start Setup

Auto-Starts the Dryer at a specified Time and Day(s). Can be set to Auto-Start the Dryer at one time only or on a repeated schedule.

Blower Setup

Sets Blower Speed (frequency is directly proportional to blower RPM)
High Freq: 60 (Max speed of the blower allowable)
Drive Freq: 40 (Current speed of the blower)

Change Password

Sets the Setup Menu Password. Default password is 22222. Setting the password to 00000 disables password protection.
Change Parameters Parameters access. See page 34.

Communications Communication setup. See page 43.

Convey Setup Enables loader control for up to two loaders using the I/O board. See wiring diagram for more information loader connection.

Display Setup Show / Hide Information and options on the controller screens

- **Batch Run** - ON/OFF – When ON, the option to dry a batch of material is displayed on the home screen.

- **Auto Shutdown** - ON/OFF – When ON, the option to initiate an auto shutdown (shut down at a specified time) is displayed on the shutdown options screen.

- **I/O Status** – ON/OFF – Displays I/O info on main screen.

- **Cycle Info** - ON/OFF – Displays Cycle info on main screen.

- **Fill Time** - ON/OFF – Displays the fill time on main screen.

- **Residence Time** - ON/OFF – When ON, displays a countdown timer (RAL parameter) indicating when an alarm will sound alerting that material has sat in the retention hopper too long.

- **Display** – TEMP/THRUPUT – Sets the upper red display to show either actual temperature or throughput (lbs or kgs per hour).

Dry Purge Setup Supplies heated, membrane dried air, to the retention hopper.

- **Modes:** AUTO or ON
 - **Auto** = supplies air only when dryer is in RUN mode.
 - **ON** = supplied air all the time even if dryer is in a STOP mode.

Loadcell Setup See page 49.

Preheat Setup Preheat Mode - Timed or Auto – In timed Mode, preheat runs for a preset amount of time with adjustments only to time. In Auto Mode, preheat allows for setup of preheat temperature delta and minimum preheat time.

Print Setup Event Log: Enabled/disabled

- **Interval:** 60s (temperatures, pressure)

- **Content:** Standard/Detail

- **Print All**

- **Print Parameters**

- **Print Event Log**

- **Print Alarm Log**

- **Clear Event Log**

- **Clear Alarm Log**

Sensor Setup Override: Enable/Disable

- **Level Sensor:** % of heat hopper (feedback only)

- **Level Trigger:** (default 45%) % of filled material in heat hopper where blower throttles back (parameter)
System
System gives access to system wide information and settings. Display Firmware, Language selection, Set Clock, Restore Parameters (to VBD-1000 defaults), Restore All (restores all parameters and settings), Update Firmware.

Temperature Setup
Units: Fahrenheit (F) or Celsius (C)

Display Precision: “Standard” displays temperature in whole degrees. “High” displays temperature in 10ths of a degree.

Energy Saver
Energy Saver (OFF/ON): On enables Energy Saver Mode. Energy Saver Mode when enabled minimizes the amount of energy used to heat the pellets by shutting down the heater and blower when possible to conserve energy. When the heating hopper’s outlet temperature has reached the temperature specified in the Energy Saver Setup (E.S. Temp), the heater and blower will shut down for the time period specified in Energy Saver Setup (E.S. Time) or until the cycle ends, whichever comes first.

Vacuum Setup
Vacuum Time (Tvac): Amount time the vacuum will run.

Pressure Low point (Pset): 125 mmHg Absolute pressure that the vacuum tank will be evacuated to.

Pressure Delta (PDelt): (020 mmHg) Vacuum Deadband

Display: ABS/DIFF Air pressure display. Absolute pressure is referenced from zero, or a perfect vacuum. Differential pressure is referenced from atmosphere.

Unit: mmHg, inHg Millimeters of mercury, inches of mercury

Pressure: Operator entered local atmospheric pressure.
Parameters

All Maguire VBD controllers operate according to certain internal PARAMETERS. Because customer requirements vary widely, we have made parameters accessible for change through the keypad. In most cases, these parameters will never need to be changed. Some parameters that are routinely adjusted values are adjustable from the main display. To access and edit the parameters, see Changing Parameters in this section:

Changing parameters can have an impact on the Dryers performance. It is highly recommended that a supervisor change the default Program Mode password to protect the values. Prior to making any changes, make sure you understand what you are doing. If in doubt contact a Maguire Dryer Technician before making changes to your dryer.

<table>
<thead>
<tr>
<th>Blower Parameters:</th>
<th>Heater Parameters:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDT Blower Delay Time</td>
<td>PTS Preheat Temperature Setting</td>
</tr>
<tr>
<td>BLF VFD Low Limit</td>
<td>PHT Preheat Time</td>
</tr>
<tr>
<td>BHF VFD High Limit</td>
<td>PTD Preheat Target Delta</td>
</tr>
<tr>
<td>BDF VFD Frequency</td>
<td>RTS Run Temperature Set-Point</td>
</tr>
<tr>
<td>BZL VFD Zero Level</td>
<td>PT1 PD Loop Proportional</td>
</tr>
<tr>
<td>BLA VFD Level Adjustment</td>
<td>DT1 PD Loop Derivative</td>
</tr>
<tr>
<td>BHT VFD Heat Throttle</td>
<td>UT1 PD Loop Update Time</td>
</tr>
<tr>
<td></td>
<td>OT1 Heat1 Over-Target Alarm</td>
</tr>
</tbody>
</table>

Dispensing Parameters:

VCH Vac. Chamber Hi Level	NH1 Heat1 No Heat Alarm
VCL Vacuum Chamber Low Level	SO1 Heat1 Set-Point Off. Percent
RHH Ret. Hopper Hi Level	MP1 Heat1 Max Percent
RHL Retention Hopper Low Level	MAX Max Temp Set-Point
BLK Bulk Density	ESM Energy Savings Mode
VFR Vacuum Chamber Fill Rate	EST Energy Savings Time
VDR Vacuum Chamber Dump Rate	RMP Temperature Ramp Settings
VFT Chamber Fill Time	CTM Cool-Down Temperature
VDT Chamber Dump Time	CTR Cool-Down Timer
FLA Fill Lag Time	
DLA Dump Lag Time	
VGD Vacuum Gate Delay	
VFA Chamber Fill Adjust	
HDD Heating Hopper Dump Delay	
VCT Vacuum Chamber Dump Threshold	
CDR Chamber Dump Retries	
RAL Residence Alarm	
BCH Batch Size	
LTP Loader Trip Point	
LTC Loader Thrupt Cutoff	
HHV Heating Hopper Volume	
HHU Heating Hopper High Level	
HLA Heating Hopper Level Alarm	

Load Cell Parameters:

KDF Loadcell Stable Wt.	
LST Load Cell Stable Time	
LCZ Loadcell Zero	
WST Weight Settle Time	
LZ1 Loadcell 1 Zero	
LZ2 Loadcell 2 Zero	

Vacuum Parameters:

VTS Vacuum Time Setting	
VPL Vacuum Pressure Low	
VPD Vacuum Pressure Delta	
VSO Vacuum Shutdown Offset	
LVT Low Vacuum Timeout	
NVT No Vacuum Timeout	
VPT Chamber Purge Timer	
VPI Chamber Purge Interval	
ATM Atmospheric Pressure	

System Parameters:

| ELT Event Logging Time | |
Parameter Units

TIMES Are expressed as full seconds or full minutes.
PERCENTS are expressed in full percents.
TEMPERATURES are expressed in full degrees (Fahrenheit or Celsius).
TERM used to calculate a value.

3-letter Acronym	Parameter title (units) – default parameter value	Parameter description
Blower Parameters

BDT Blower Delay Time (Time in seconds) – 02002
The first two digits are the delay in seconds between powering the blower and powering the heating hopper heater. The last two digits are the delay in seconds between powering down the blower and powering down the heating hopper heater.

BDF VFD Frequency (Hz) – 00060
The frequency, in Hz, that the VFD will power the blower motor with. The blower RPMs, as well as the airflow, are directly proportional to this frequency.

BHF VFD High Limit (Hz) – 00060
The maximum VFD frequency, in Hz, that the blower may be set to from the Blower Setup menu. The maximum settable value for this parameter is 000060.

BLF VFD Low Limit (Hz) – 00025
The minimum VFD frequency, in Hz, that the blower may be set to from the Blower Setup menu. The minimum settable value for this parameter is 000025.

BZL VFD Zero Level (%) – 00045
The heating hopper level, expressed as a percentage, that triggers the VFD to reduce speed to the BLA setting.

BLA VFD Level Adjustment (Hz) – 00025
The frequency, in Hz, that the blower will run at if the heating hopper level is at or below the BZL level. This reduced blower speed eliminates popcorning when the heating hopper material level is low.

BHT VFD Heat Throttle (%) – 00100
Percentage of adjustment to the heater's on-time at the point when the material has finished exiting the heat hopper and the blower starts. A reduced heater on-time percentage (from 100%) reduces the heat exposure to the new material entering the heat hopper. Activated when the level sensor is below BZL (parameter). Setting the first digit to a 1 overrides the percent adjustment and effectively turns off the heater when material is below the BZL threshold.
Dispensing Parameters

VCH
Vacuum Chamber High Level – weight - 00035
Amount of material dispensed into the Vacuum Chamber from the heating hopper.
Also known as the “Fill Weight”.

VCL
Vacuum Chamber Low Level – weight - 00005
Two conditions are triggered by VTL.
When in Clean Mode, the Vacuum Chamber fill valve will be open when the amount of material in the Vacuum Chamber is at or below this weight. When starting in Auto Cycle, the “material in Vacuum Chamber” warning will be triggered when the amount of material is at or above this level.

RHH
Retention Hopper High Level – weight - 00035
Amount of material (the high level) dispensed into the Retention Hopper from the Vacuum Chamber.

RHL
Retention Hopper Low Level – weight - 00005
Three conditions are triggered by RTL.
When in Clean Mode, the Vacuum Chamber dump valve will be open when the amount of material in the Retention Hopper is at or below this weight. When starting an Auto Cycle, the “material in Retention Hopper” warning will be triggered when the amount of material is at or above this level. When in Auto Cycle, the amount of material in the Retention Hopper must be at or below this level in order for the Vacuum Chamber to dump.

BLK
Bulk Density - Bulk density of the material in either pounds per cubic foot or kilograms per liter (depending on the weigh unit of measurement in Loadcell Setup).

VFR
Vacuum Chamber Fill Rate – grams/second – 00580
Learned fill rate of the Vacuum Chamber in seconds. Used to calculate a precise Vacuum Chamber fill time.

VDR
Vacuum Chamber Dump Rate – grams/second – 00580
Learned dump rate of the Vacuum Chamber in seconds. Used to calculate a precise Vacuum Chamber dump time.

VFT
Vessel Fill Time (Time in seconds) – 00035
The time in seconds that the Vacuum Chamber fill valve will be open assuming that the Vacuum Chamber High Level (VTH) is not reached first.

VDT
Vessel Dump Time - (Time in seconds) – 00035
The time in seconds that the Vacuum Chamber dump valve will be open assuming that the Retention Hopper High Level (RTH) is not reached first.

FLA
Fill Lag Time (ms) – 00175
The time, in milliseconds, that is added to every vacuum chamber fill valve opening operation. This compensates for the fill valve opening delay caused by the inherent lag in any mechanical device.
DLD Dump Lag Time (ms) – 00100
The time, in milliseconds, that is added to every vacuum chamber dump valve opening operation. This compensates for the dump valve opening delay caused by the inherent lag in any mechanical device.

VGD Vacuum Gate Delay (Time in seconds) – 00303
Format: XXXYY - XXX = lower vacuum gate, YY = upper vacuum gate
The amount of time in seconds after a vacuum gates opens before the vacuum chamber fill or dump valve can open. (Opening of Vacuum Chamber fill valve or dump valve).

VFA Vacuum Fill Adjust (Retries, percent) – 00310
Two part parameter. The first three digits are the number of retries to fill the Vacuum Chamber (default 3 retries). Last two digits are the minimum allowable percent under the targeted maximum fill weight of the Vacuum Chamber (VTH parameter). After the third failed retry the “Low Batch” alarm is generated while the VBD continues to retry.

HDD Heat Hopper Dump Delay - Seconds - 0004
Delay in seconds between the heating system shutdown and material dump from the heating hopper to the Vacuum Chamber. This delay allows time for the blower to stop.

VCT Vacuum Dump Threshold – grams/second – 00115
During a Vacuum Chamber dump (into the Retention Hopper), the material flow rate is constantly calculated. When the flow rate reaches VTT, indicating that the chamber is empty, the Vacuum Chamber dump valve is closed.

CDR Chamber Dump Retries (%/Retries) – 05003
Controls the Vacuum Chamber Dump Alarm.
Format: XXXYY - XXX = percentage, YY = number of retries
When the vacuum chamber dumps material into the retention hopper, if less than 50% of the material that should have dropped is detected in the retention hopper, a dump retry will occur. After 3 failed retries a VC DUMP alarm will trigger.

RAL Residence Alarm – pounds / minutes - 05120
When the Residence Alarm is enabled, this parameter will determine when a residence alarm will occur. This parameter contains two variables. The first two digits are weight (in lbs or kgs) and the last three digits are minutes. For example, if after 120 minutes there are less than 5 lbs (or kgs) of material removed from the retention hopper, the Residence Alarm will sound (if enabled, see the Alarm Setup menu).

BCH Batch Mode – weight (lbs/kgs) – 00000
The amount of material in pounds or kilograms that will be dried during a batch run.

LTP Loader Trip Point – weight (1/10 pound or kilogram) – 00005
If loader 2 (downstream loader) is enabled, and the amount of material in the retention hopper is at or above this weight, the loader 2 output turns on.
LTC Loader Throughput Cutoff – weight/minute – 00005
When loader 2 (downstream loader) mode is set to “THRUPUT”, and the amount of material in the Retention Hopper is at or below the LTP parameter, and the throughput is below this parameter (LTC), turn the loader 2 output off.

HHV Heating Hopper Volume – 10ths of cubic feet or 10ths of liter.
The amount of material that the heating hopper can hold taking into account dead space at the top and how far the loader hangs into the heating hopper. This parameter is used to calculate the beginning of an auto shutdown when loader #1 is set to auto. Installation of an optional heating hopper extension would necessitate changing this parameter.

HHU Heating Hopper High Level (%) – 00095
The level, expressed as a percentage, that the heating hopper will be filled to when Loader #1 is set to AUTO (and the heating hopper loader signal cable is wired in series to the Loader #1 control relay). Note that the deadband is is 5%.

HLA Heating Hopper Level Alarm (%) – 00050
The level, expressed as a percentage, that the Heating Hopper Level Alarm will trigger if enabled in the Alarm Setup menu. Any heating hopper level at or below this level will trigger the alarm.

Heater Parameters

PTS Heat1 Temperature Set-Point (Temperature) – 00150
Heating hopper air inlet temperature setting in °F or °C

PHT Preheat Time – Time in Minutes – 00030
Time in Minutes that the material in the heating hopper is heated following a cold start before normal Run Dryer sequence starts.

PTD Preheat Target Delta – Degrees – 00030
When preheat mode is set to AUTO (not time), the preheat cycle will end when the temperature of the air exiting the heating hopper (T2) is within PTD degrees of the air entering the heating hopper (T1).

RTS Run Temperature Setting – Degrees – 00150
The heating hopper air inlet temperature setting in °F or °C. This is the temperature that the resin is heated to before the vacuum cycle, and is shown as “T1a” on the status screen.

PT1 Heat1 Proportional – Term – 00040
This parameter is used to make adjustments to the heating hopper heat output. Changes to this parameter should not be made unless directed by a Maguire Technician. The proportional term (or “gain”) makes a change to the heating hopper heater output that is proportional to the current error value difference between set-point and actual temperature.

DT1 Heat1 Derivative – Term – 00015
This parameter is used to make adjustments to the heating hopper heat output. Changes to this parameter should not be made unless directed by a Maguire Technician. The rate of change of the process error is calculated by determining the slope of the error over time (i.e., its first derivative with respect to time) and multiplying this rate of change by the derivative gain.

UT1 Heat1 Update Time – Time – 00415
This parameter has two parts. The first three digits is the amount of time, in seconds, between PID updates if the heating hopper inlet temperature, T1a, is ABOVE setpoint. The last two digits is the amount of time, in seconds, between PID updates if the heating hopper inlet temperature, T1a, is BELOW setpoint.

OT1 Heat1 Over-Temp Alarm – Percent – 06006
The first three digits is the time in seconds by which the actual temperature must be above the set-point temperature of the heating hopper heater by the value in degrees represented in the 4th and 5th digits of this parameter before an over-temp alarm condition occurs.

NH1 Heat Hopper No Heat Alarm – Seconds – 120
This is the maximum time limit, in seconds, after the heat cycle begins, during which one of the following two conditions must be detected: Either the temperature must climb 20 degrees, or the temperature must move at least 20 percent toward the target temperature. If neither condition is met the “NO HEAT” alarm will sound. Such an occurrence would signal a failure of either the heater or the blower. This parameter protects the heater from burn out in the event the blower fails or airflow is blocked.

SO1 Heat Hopper Set-Point Offset – degrees – 03002
Heating hopper set-point temperature offset. Used for heat control. Offset from the target in degrees. First 3 digits are the number of seconds to hold the offset setpoint temperature. 4th and 5th digits are the number of degrees below the target setpoint.

MP1 Heat Hopper Maximum Percent – Percent – 00100
Limits the duty cycle of the heater.

MAX Max Temp Set-Point (Temperature) – 00350
The maximum allowable temperature in whole degrees.

ESM Energy Savings Mode – temperature – 000125
When Energy Saver Mode is enabled, and the temperature of the air exiting the heating hopper is at or above this level and the Energy Savings Time has elapsed, trigger Energy Saver Mode.

EST Energy Savings Time – minutes – 00030
If Energy Savings Mode is enabled and Energy Savings Mode has been activated, the Energy Saving Time is the time that will elapse before Energy Savings Mode is reactivated to bring the temperature of the material back up.
Temperature Ramp Settings (Increments/Minute/Degrees) – 52036
Format: XYYZZ - X = number of increments, YY = duration of ramp in minutes, ZZ = temperature delta
For example, with RMP set to 52020: When temperature ramping is turned on, over the course of 20 minutes, a 20 degree C ramp will occur, in 5 increments of 4 degrees C.

Cool-Down Temperature – Degrees - 00120 Fahrenheit or 00050 Celsius
Cool-down target temperature for the heat hopper during the Planned Shutdown.

Cool-Down Timer – Minutes - 00030
Targeted elapsed time to cool-down target temperature (CTM parameter).

Load Cell Parameters

Loadcell Stable Weight – counts – 00006
Maximum allowable fluctuation in raw loadcell counts to produce a stable weight reading.

Loadcell Stable Time – milliseconds – 00100
Duration in milliseconds that raw loadcell counts must remain within KDF to produce a stable loadcell reading.

Loadcell Zero – counts – 01000
Minimal allowable counts when zeroing load cells.

Weight Settle Time – seconds – 00005
Delay time in seconds after the vacuum chamber fill valve closes to allow material to settle and the dryer to acquire an accurate weigh reading.

Load Cell 1 Zero – counts – 00000
Factory set reference point in counts for retention hopper load cell. This parameter should not be changed unless directed by a Maguire technician or if load cells are replaced. If load cells are replaced, instructions will be provided. When this parameter is set to zero (00000), restriction on loadcell calibration is disabled.

Load Cell 2 Zero – counts – 00000
Factory set reference point in counts for vacuum chamber load cell. This parameter should not be changed unless directed by a Maguire technician or if load cells are replaced. If load cells are replaced, instructions will be provided. When this parameter is set to zero (00000), restriction on loadcell calibration is disabled.
Vacuum Parameters

VTS Vacuum Time Setting (Time in minutes) – 00020
The length of a vacuum cycle in minutes.

VPL Vacuum Pressure Low (mm Hg abs.) – 00080
The pressure (absolute mm, absolute inches, differential mm, differential inches) at which the vacuum system will attempt to attain before stopping and holding said pressure. Default shown is absolute mm.

VPD Vacuum Pressure Delta (mm of mercury) – 00020
The pressure difference above VPL at which the vacuum generator turns back on. This value is the mm of mercury above VPL.

VSO Vacuum Shutdown Offset – Seconds – 00015
Amount of time in seconds before the Vacuum Timer Setting (VTS) expires at which time Vacuum Chamber equalization will commence.

LVT Low Vacuum Timeout – Seconds – 00120
Time in seconds that the vacuum generator will run before a LOW VACUUM ALARM is triggered. Vacuum generator continues to attempt to pull a target vacuum pressure after alarm sounds.

NVT No Vacuum Timeout (retries, time in seconds) – 00345
The first three digits are the number of retries that the vacuum gates will cycle if vacuum is not achieved. During a retry the vacuum gates are cycled opened and closed. The last two digits Amount of time in seconds the chamber pressure must reach 200mm of mercury below atmosphere to not trigger a retry.

VPT Vacuum Purge Timer – seconds – 00005
During equalization of the Vacuum Chamber, this is additional time in seconds beyond calculated atmospheric pressure, to allow for true pressure equalization.

VPI Vessel Purge Interval – seconds/seconds – 15180
Frequency and duration of dry air purge of the Vacuum Chamber. Default is a frequency of 3 minutes (180 seconds) for a purge duration of 15 second.

ATM Atmospheric Pressure – mm Hg (absolute) – 00760
The measured ambient atmospheric pressure. This parameter is updated once per cycle. Do not change this parameter.

System Parameters

ELT Event Logging Time (Time in seconds) – 00060
Time in seconds between logging data (when logging is enabled).
Changing Parameters

Changing parameters can have an impact on the Dryer's performance. It is highly recommended that a supervisor change the default Program Mode password to protect the parameter values. Prior to making any parameter changes, make sure you understand what you are doing.

To access the internal parameters you must enter into Setup Mode.
The Setup Mode default password is: 2222
To change a PARAMETER, the machine must be stopped.

Press: to toggle the Mode Selection to the Wrench Icon.

Display will show:

Enter: the 5-digit password. (Default password is 22222). Use the ▲ ▼ buttons to adjust the digit. Press ENTER to move to the next digit and to finish.

Display will show:

Press: the ▼ button several times to move down to the option "Change Parameters". Press ENTER to select Change Parameters.

Display will show:

Press: the ▼ button to move through the parameters. Press ENTER to select a parameter.

Display will show:

Press: When the parameter is selected, the left most digit is highlighted. Use the ▲ ▼ buttons to adjust the digit. Press ENTER to move to the next digit and to finish.

Display will show:

Press: When parameter editing is complete, press the ▼ button to move through the parameters to the bottom of the list then to BACK. With BACK selected, press ENTER to exit parameters. Pressing the red power button once will also back out of parameter editing.

Display will show:
Communications Setup

VBD-1000 communications enabled software communication over Ethernet using the MLAN Protocol. For more information about the MLAN Protocol and the VBD-1000 Dryer see the MLAN Protocol manual, available on the Maguire Products Inc website.

Press: ![Select Icon] to toggle the Mode Selection to the Wrench Icon.

Display will show:

```
MODE=SETUP
ENTER PASSWORD
```

Enter: the 5-digit password. (Default password is 22222). Use the ▲ ▼ buttons to adjust the digit. Press ENTER to move to the next digit and to finish.

Display will show:

```
MODE=SETUP
Alarm Setup
Blower Setup
Change Password
Change Parameters ▼
```

Press: the ▼ button several times to move down to the option "Communications". Press ENTER to select Communications.

Display will show:

```
MODE=SETUP
►Alarm Setup
Blower Setup
Change Password
Change Parameters ▼
```

MLAN communication over Ethernet requires an ID number between 001 and 255 and an IP address including a valid subnet and gateway (if applicable).

Press: the ▼ button to move to the MLAN ID. By default the ID is 001. If you wish to change the ID number Press ENTER to select the MLAN ID. When the MLAN ID is selected, the left most digit is highlighted. Use the ▲ ▼ buttons to adjust the digit. Press ENTER to move to the next digit and to finish.

Display will show:

```
MODE=SETUP
MLAN ID                   001
View MAC Address
View TCP/IP Addr ▼
```

Press: When ID editing is complete, press the ▼ button to move to the bottom of the list the to TCP/IP Setup. By default the VBD-1000 is set to a static IP Address of 192.168.000.001 with a subnet of 255.255.255.0 and a default gateway of 192.168.000.001. If you wish to change the TCP/IP settings, press ENTER to select the TCP/IP Setup.

Display will show:

```
MODE=SETUP
►MLAN ID                   001
View MAC Address
View TCP/IP Addr ▼
```

Press: When parameter editing is complete, press the ▼ button to move through the parameters to the bottom of the list the to BACK. With BACK selected, press ENTER to exit parameters. Pressing the red power button once will also back out of parameter editing.

Display will show:

```
MODE=SETUP
►TCP/IP Setup
```

Press: ENTER with Static IP selected will toggle to DHCP. Otherwise to specify a static IP, press the ▼ button to move to the IP address.

Display will show:

```
MODE=SETUP
Static IP
```

Press: the ENTER button to select the next digit in the IP Address. Press Use the ▲ ▼ buttons to adjust the digit. Press ENTER to move to the next digit and to finish. After the IP address, Network Mask and Default Gateway will show and can be edited the same way. When complete, navigate to BACK and press ENTER to exit the communication setup.
Maintenance

Drain and purge Air Filter / Regulator

The purpose of the air filter is to remove moisture and contaminants from the compressed air supply and protect the pneumatic components of the Dryer. The air filter must be periodically purged of moisture.

Do not supply Dryer with a lubricated air supply. Damage to Dryer may result. Use only a clean, dry, oil-free air supply.

Clean Air Filter

The purpose of the air filter located on the back of the dryer enclosure is to remove contaminants from the ambient air supply and protect the heating components of the Dryer. The air filter must be periodically checked and cleaned. Recommended cleaning interval is monthly. More frequent in very dusty environments.

Air Pressure Adjustments

Air Pressure

Air pressure affects the ability to draw a high vacuum. We recommend a pressure setting of 80 PSI while the dryer is running. Air is used when the vacuum generator is running so observe the PSI while the Dryer is drawing a vacuum. The gauge should continue to read this setting even when the vacuum unit is on. If it does not maintain pressure your supply line is not sized properly.

Do not supply Dryer with a lubricated air supply. Damage to Dryer may result. Use only a clean, dry, oil-free air supply.
Clean Out Procedure

Clean Out dumps the Heating Hopper or the Vacuum Chamber or both at the same time. The following explains how to perform these procedures.

HEATING HOPPER HOT SURFACES:

As with all dryers, there are **HOT SURFACES** to avoid. Temperatures can reach 350F, (180C). Typically these surfaces are not at dangerous temperatures, however all hot surfaces should be avoided.

Do Not Perform a Clean Out Unless VBD-1000 Dryer is First Properly Shut Down.

For proper shutdown procedure, see Startup and Operation on page 27.

During the Clean Out, keep hands and tools clear of all valves. **DO NOT** reach into machine during Clean Out.

Using the Heating Hopper Clean Out

The Heating Hopper has a front side door for access to the full internal height of the Heating Hopper. The Heating Hopper is non-removable. Prior to opening the front access door, removal of all material is recommended. Material in the Heating Hopper can be evacuated using the Heating Hopper Manual Drain Valve located on the right-side base of the Heating Hopper. To evacuate material from the Heating Hopper using the Heating Hopper Manual Dump Valve, use 3-inch tubing to direct the material into a holding bin.

Note: use of the Heating Hopper Manual Dump Valve is optional. Material can be dumped into the vacuum chamber, then into the retention hopper and conveyed away from the VTA at the base of the dryer.

Emptying the Heating Hopper

<table>
<thead>
<tr>
<th>Press:</th>
<th>Use the button to move down to Clean Out.</th>
<th>Display will show:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>=== SELECT MODE ===</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Run Dryer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>►Clean Out</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manual Operations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Press:</th>
<th>ENTER to enter the Clean Out screen.</th>
<th>Display will show:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CLEAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>►Dump Heating Hopper</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dump Vacuum Chamber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dump All</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Press:</th>
<th>ENTER to select Dump Heating Hopper and start the Clean Out.</th>
<th>Display will show:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CLEAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>►BACK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dumping Heat Hopper</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Press ENTER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to Quit</td>
</tr>
</tbody>
</table>
Press: ENTER when clean out is completed.

Display will show: Exiting Clean Out
--- Wait ---

The Heating Hopper can now be opened and cleaned.

Emptying the Vacuum Chamber

The Vacuum Chamber is non-removable. The Vacuum Chamber has a front facing cleanout hatch. Prior to opening the front access hatch, removal of all material is recommended.

IMPORTANT: During the Clean Out, keep hands and tools clear of all valves. DO NOT reach into machine during Clean Out.

Press: Use the button to move down to Clean Out.

Display will show:

--- SELECT MODE ---
Run Dryer
Clean Out
Manual Operations

Press: ENTER to enter the Clean Out screen.

Display will show:

CLEAN BACK
Dump Heating Hopper
Dump Vacuum Chamber
Dump All

Press: Use the button to move down to “Dump Vacuum Chamber”.

Display will show:

CLEAN BACK
Dump Heating Hopper
Dump Vacuum Chamber
Dump All

Press: ENTER to empty the Vacuum Chamber.

Display will show:

CLEAN BACK
Dumping Vacuum Chamber
Press ENTER to Quit

Press: ENTER when clean out is completed.

Display will show: Exiting Clean Out
--- Wait ---

Clean Out / Dump All – Dump All opens all valves allowing material to flow freely through the dryer. Material in the Heating Hopper will pass into the Vacuum Chamber and then pass into the Retention Hopper. In this mode, it is possible to empty the entire dryer using a conveying system pulling from the material outlet at the base of the dryer.

IMPORTANT: During the Clean Out, keep hands and tools clear of all valves. DO NOT reach into machine during Clean Out.

Press: Use the button to move down to Clean Out.

Display will show:

--- SELECT MODE ---
Run Dryer
Clean Out
Manual Operations

Press: ENTER to enter the Clean Out screen.

Display will show:

CLEAN BACK
Dump Heating Hopper
Dump Vacuum Chamber
Dump All
Cleanout of the Vacuum Chamber

Access to the Vacuum Chamber through the cleanout hatch located on the front of the Vacuum Chamber.

To remove the hatch insert rotate the two butterfly latches and then unhook from the hatch faceplate.

Using two hands slide the hatch insert out of the Vacuum Chamber. Use caution handling the Vacuum Chamber Hatch. Do not drop.

Access the interior of the Vacuum Chamber through the hatch opening.

When cleanout is complete, clean the seal around the hatch insert and then re-secure the hatch to the Vacuum Chamber.
Cleanout of the Retention Hopper

The Retention Hopper will slide out for easy access. Prior to sliding out the Retention Hopper remove all material. Sliding out the Retention Hopper will open the bottom drain of the hopper.

<table>
<thead>
<tr>
<th>To slide the Retention Hopper out you must first raise the Retention Hopper Skirt. Raising the skirt requires two people. Locate the two skirt handles.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Using the lift handles, raise the skirt up and secure the skirt on the two Skirt Hangers.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Locate the black lift handle and raise the Retention Hopper by rotating the lift handle up and towards the front of the Dryer.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>With the lift handle raised, use the red handle to slide the Retention Hopper out towards the front of the Dryer.</th>
</tr>
</thead>
</table>

| When cleanout is complete, slide the Retention Hopper back into the Dryer, then lower the Retention Hopper using the black lift handle. Finally lower the Retention Hopper Skirt. |
Loadcell Calibration

Zero Weight Calibration

BE SURE The Air supply is on.
BE SURE The Vacuum Chamber and Retention Hopper is EMPTY.
BE SURE The Vacuum Chamber and Retention Hopper are hanging / resting freely on the load cells.
BE SURE The air lines are connected.

LOAD CELL ZERO CALIBRATION
The sequence is as follows:

<table>
<thead>
<tr>
<th>Press:</th>
<th>Display will show:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select</td>
<td>MODE = SETUP ENTER PASSWORD 0_ _ _ _</td>
</tr>
</tbody>
</table>

Enter: the 5-digit password. (Default password is 22222). Use the ▲, ▼ buttons to adjust the digit. Press ENTER to move to the next digit and to finish.

Press: the ▼ button several times to move down to the option “Loadcell Setup”. Press ENTER to select.

<table>
<thead>
<tr>
<th>Press:</th>
<th>Display will show:</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC LC:</td>
<td>MODE = SETUP ► Alarm Setup Auto-Start Setup Blower Setup ▼</td>
</tr>
<tr>
<td>RH LC:</td>
<td>LOADCELL SETUP ► BACK</td>
</tr>
<tr>
<td>Unit:</td>
<td>VC LC: - 0</td>
</tr>
<tr>
<td>RC LC:</td>
<td>RH LC: + 0</td>
</tr>
<tr>
<td>Precision</td>
<td>Unit: Pounds▼</td>
</tr>
<tr>
<td>Calibrate Loadcell - See calibration routine below.</td>
<td></td>
</tr>
<tr>
<td>LC1 (RH)</td>
<td>Loadcell Setup ► BACK</td>
</tr>
<tr>
<td>LC2 (VC)</td>
<td>VC ZERO CALIB.</td>
</tr>
<tr>
<td></td>
<td>VC FULL CALIB.</td>
</tr>
<tr>
<td></td>
<td>RH ZERO CALIB.</td>
</tr>
<tr>
<td></td>
<td>RH FULL CALIB.</td>
</tr>
<tr>
<td></td>
<td>Restore Defaults ▼</td>
</tr>
<tr>
<td>Calibrate Loadcell - VC is Vacuum Chamber, RH is Retention Hopper.</td>
<td></td>
</tr>
</tbody>
</table>

Loadcell Setup displays:

► VT LC - Current reading in either pounds or kilograms of the Vacuum Chamber loadcell.
► RH LC - Current reading in either pounds or kilograms of the Retention Hopper loadcell.
► Unit - Selects units pounds of kilograms.
► Precision - Standard, whole pounds or kilograms. High tenths of pounds or kilograms.
► Calibrate Loadcell - See calibration routine below.
► LC1 (RH) - Raw counts of the Retention Hopper load cell.
► LC2 (VC) - Raw counts of the Vacuum Chamber load cell.

Calibrate Loadcell - VC is Vacuum Chamber, RH is Retention Hopper.

<table>
<thead>
<tr>
<th>Press:</th>
<th>Display will show:</th>
</tr>
</thead>
<tbody>
<tr>
<td>the ▼ button to move to Calibrate Loadcell. Press ENTER to select.</td>
<td>LOADCELL SETUP ► BACK VC ZERO CALIB. VC FULL CALIB. RH ZERO CALIB. RH FULL CALIB. Restore Defaults ▼</td>
</tr>
</tbody>
</table>

Press: the ▲, ▼ buttons to move to VC ZERO CALIB. (zero calibration of the Vacuum Chamber) BE SURE the Vacuum Chamber is empty. Press ENTER to advance to Zero Calibration

Press: the ▼ button to move to Continue.

Press: ENTER to start the ZERO Calibration.

Press: the ▲, ▼ buttons to move to RH ZERO CALIB (zero calibration of the Retention Hopper) BE SURE the Retention Hopper is empty.
The ZERO point of the load cells is now set properly. FULL weight calibration may also be done at this time, however, it probably is NOT NECESSARY. When load cell readings shift due to rough handling, the entire range of readings from ZERO to FULL shift together. The ZERO weight calibration routine resets the full range of the cells and, therefore, corrects FULL weight readings as well.

Full Weight Calibration

When SETTING FULL WEIGHT, BE SURE you know the exact weight (in grams or pounds) that you are adding to the tank. Place this weight in the tank.

Enter the EXACT weight that you have placed in the Tank. Weigh units are in tenths of a pound or tenths of a kilogram depending on the weigh units set in LOAD Cell Setup menu. The weight should be close to 35.0 lbs or 16.0 kilograms.

After FULL weight calibration, if the display says (BAD CELL), the weight you are using does not match the weight you entered, the tank is not free to move, OR the load cells are bad.

Full Weight Calibrations - Full weight calibration will be done on both the Vacuum Chamber and Retention Hopper. It is recommended to use a known weight of material for the Full Calibration. Place approximately 35 lb of material into the Heating Hopper. Using Manual Operations, Operation Outputs, Vac Tank Fill, dispense the material from the Heating Hopper to the Vacuum Chamber prior to entering the Full Calibration Routine.

If material totals are being observed loadcell full weigh calibration is recommended periodically (approximately every six months).
<table>
<thead>
<tr>
<th>Press:</th>
<th>Use the button to move down to VC FULL CALIB. to do the Full Weight calibration of the Vacuum Chamber.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Press:</td>
<td>ENTER to start the FULL Calibration. Press the button to move to Continue.</td>
<td>Display will show: LOADCELL FULL Enter Weight: 0_. _Lb</td>
</tr>
<tr>
<td>Press:</td>
<td>Use the buttons to set the weight value. Press ENTER to move between digits. ENTER to start the FULL Calibration.</td>
<td>Display will show: LOADCELL ZERO -=- Wait -=-</td>
</tr>
<tr>
<td>Press:</td>
<td>BACK multiple times to return top level menu. It is now necessary to move the material from the Vacuum Chamber down to the Retention Hopper. Using Manual Operations, Operation Outputs, Ret Tank Fill, dispense the material from the Vacuum Chamber to the Retention Hopper. Then enter the Full Calibration Routine once again.</td>
<td></td>
</tr>
<tr>
<td>Press:</td>
<td>ENTER to start the FULL Calibration. Press the button to move to Continue.</td>
<td>Display will show: LOADCELL FULL Enter Weight: 0_. _Lb</td>
</tr>
<tr>
<td>Press:</td>
<td>Use the buttons to set the weight value. Press ENTER to move between digits. ENTER to start the FULL Calibration.</td>
<td>Display will show: LOADCELL ZERO -=- Wait -=-</td>
</tr>
</tbody>
</table>
Alarms - Cause and Solution

Typically problems are indicated by an alarm condition on the Dryer controller’s display with an audible alarm and a flashing strobe light. The following alarm troubleshooting chart will describe the alarm condition and possible causes and solutions.

<table>
<thead>
<tr>
<th>Alarm Display</th>
<th>Troubleshooting</th>
</tr>
</thead>
</table>
| **ALARM:01** | **Problem:** The blower is not running.
Motor contactor overload relay has tripped. See wiring diagram on page 70 for Blower Motor Contactor. Item # 3, overload relay on wiring diagram. This alarm will trigger a dryer shutdown.

Solution: Reset contactor. Check that blower motor shaft is not locked. Check line voltage to machine; make sure voltage is not too low which can cause an increase in amperage. Check that power source has not lost a phase. |
| **ALARM:02** | **Problem:** No heat or inadequate heat detected by the Heating Hopper inlet RTD.
This alarm is triggered by the NH1 parameter. NH1 parameter is the maximum time limit, in seconds, after the heat cycle begins, during which one of the following two conditions must be detected: Either the temperature must climb 20 degrees, or the temperature must move at least 20 percent toward the target temperature. If neither condition is met the “NO HEAT” alarm will sound. Such an occurrence would signal a failure of either the heater or the airflow from the blower. This parameter and consequent alarm protects the heater from burn out in the event the blower fails or airflow is blocked.

Solution: Check for airflow from the blower. Check blower inlet obstruction, check that 2” air duct from blower to heater is not detached, obstructed or perforated. Check 2” air duct from top of heater to heating hopper inlet for detachment, obstruction or perforation. Check resistance across heater. Disconnecting heater from circuit is not necessary to measure resistance. Measurement should read 80 ohms. See wiring diagram on page 70. If the dryer’s heater shorted, the result would be a trip of the breaker or fuse supplying power to the VBD-150 dryer. |
| **ALARM:03** | **Problem:** The heating hopper air inlet temperature has drifted above set-point.
If the Heating hopper air inlet temperature (T1a sensor) is over the degrees specified in parameter OT1 (default 6° F or 6° C) for a time greater than the time in seconds specified in OT1, then the alarm is triggered and the heater output will drop by 20%. The alarm will occur but the machine will keep running. See OT1 parameter for more information.

Solution: No solution is necessary under normal circumstances as the dryer is alerting to a temperature adjustment. If this alarm continued to repeat, contact Maguire Technical Support. |
Problem: The heating air temperature has drifted above set-point.

If the heating air temperature (T1a sensor) is over the degrees specified in parameter OT1 (default 6° F or 6° C) for a time greater than the time in seconds specified in OT1, then the alarm is triggered and the heater output will drop by 20%. The alarm will occur but the machine will keep running. See OT1 parameter for more information.

Solution: No solution is necessary under normal circumstances as the dryer is alerting to a temperature adjustment. If this alarm continued to repeat, contact Maguire Technical Support.

Problem: No heat or inadequate heat detected by the Purge Heater RTD.

This alarm is triggered by the NH2 parameter. NH2 parameter is the maximum time limit, in seconds, after the heat cycle begins, during which one of the following two conditions must be detected: Either the temperature must climb 10 degrees, or the temperature must move at least 10 percent toward the target temperature. If neither condition is met the “NO HEAT” alarm will sound. Such an occurrence would signal a failure of either the heater or the compressed airflow. This parameter and consequent alarm protects the purge heater from burn out in the event the compressed air failure or airflow is blocked.

Solution: Check compressed airflow to the purge heater is adequate. Check that the air line that supplies the solenoid valve in the inlet of the purge heater is properly attached.

Problem: The purge air temperature has drifted above set-point.

If the purge air inlet temperature (T2a sensor) is over the degrees specified in parameter OT2 (default 6° F or 6° C) for a time greater than the time in seconds specified in OT2, then the alarm is triggered and the heater output will drop by 20%. The alarm will occur but the machine will keep running. See OT2 parameter for more information.

Solution: No solution is necessary under normal circumstances as the dryer is alerting to a temperature adjustment. If this alarm continued to repeat, contact Maguire Technical Support.

Problem: The purge air temperature has drifted above set-point.

If the purge air temperature (T2a sensor) is over the degrees specified in parameter OT2 (default 6° F or 6° C) for a time greater than the time in seconds specified in OT2, then the alarm is triggered and the heater output will drop by 20%. The alarm will occur but the machine will keep running. See OT2 parameter for more information.

Solution: No solution is necessary under normal circumstances as the dryer is alerting to a temperature adjustment. If this alarm continued to repeat, contact Maguire Technical Support.
Problem: The dryer failed to pull a vacuum after three attempts.

Dryer attempted to pull a vacuum 200mm below atmosphere within 45 seconds (default). Dryer attempted three times (number of default retries). After each attempt vacuum was equalized and vacuum gates were opened and closed in an attempt to reseal the Vacuum Chamber (possible debris or pellets preventing adequate seal). Defaults are controlled the NVT parameter (retries and seconds). This alarm is non-fatal. Dryer will continue to reseed after alarming.

Solution: If Dryer continues to alarm, check: compressed air connection and pressure (dryer’s regulator should be reading 85psi). Check for debris in seals above and below Vacuum Chamber.

Problem: The Retention Hopper is missing.

If retention hopper loadcell (pair) is reading 23.2 pounds (10000 grams) below tare during AUTO run, this alarm is triggered and Dryer stops (fatal). This alarm is generally caused by a missing Retention Hopper but may also be caused by dryer Retention Hopper load cells having been zero calibrated while material was in the Retention Hopper, or faulty loadcells.

Solution: If Retention Hopper is missing replace Retention Hopper. If Retention Hopper is in place, ensure the tank is empty and zero calibrate the load cells. If load cells are damaged, a zero calibration may detect this.

Problem: RTD (temperature sensor) reading is above or below max/min reading

RTD Sensor is probably disconnected or damaged. Check temperature display reading in a cool state. Temperature should display room temperature. If reading is below -25C or above 450C RTD sensor has failed.

Solution: Contact Maguire Technical Support for a replacement RTD Sensor.

Problem: Maximum Fill Time (VFT parameter) has been reached before target material weight (VTH parameter) has been achieved.

This alarm is triggered when the VFT parameter has been reached (Vessel Fill Time) before the VTH (Vacuum Chamber High level), indicating shortage of material in heating hopper or possible valve jam. The outcome of this alarm is controlled by the Material Shortage Alarm settings. See page 31.

Solution: Check material supply. Check Vacuum Chamber fill valve located at the base of the heating hopper.

Problem: Air pressure sensor has detected air pressure below 50 psi.

Solution: Check exhausting lockout valve located on the front lower left side of VBD-150. Ensure that the valve is open. Check pressure of air supply.
Problem: The heating hopper heater thermal safety switch has opened due to an overheat condition.

Located on the top of the Heater Tube is a Temperature Safety Switch. If the temperature of the heater exceeds the safety switch maximum, this switch opens, shutting down the entire dryer (FATAL Alarm).

Solution: Allow the dryer to cool. Open the left side panel of the dryer and locate the Heater Tube Safety Switch on the upper side of the stainless steel heater tube. Press the red safety switch button to reset the Temperature Safety Switch. If problem occurs repeatedly, contact Maguire Technical Support.

Problem: The purge heater thermal safety switch has opened due to an overheat condition.

Located on the side of the purge heater tube is a Temperature Safety Switch. If the temperature of the purge heater exceeds the safety switch maximum, this switch opens, shutting down the entire dryer (FATAL Alarm).

Solution: Allow the dryer to cool. Open the left side panel of the dryer and locate the purge heater thermal safety switch on the side of the stainless steel purge heater tube. Press the red reset button to reset the thermal safety switch. If problem occurs repeatedly, contact Maguire Technical Support.

Problem: The Vacuum Chamber is missing.

If Vacuum Chamber load cell is reading 33 pounds (15000 grams) below tare during AUTO run, this alarm is triggered and Dryer stops (fatal). This alarm is generally caused by a missing Vacuum Chamber but may also be caused by the dryer Vacuum Chamber load cells having been zero calibrated while material was in the Vacuum Chamber.

Solution: If Vacuum Chamber is missing replace Vacuum Chamber. If Vacuum Chamber is in place, ensure the tank is empty and zero calibrate the load cells. If load cells are damaged, a zero calibration may detect this.

Problem: The Retention Hopper is missing.

If Retention Hopper load cell is reading 23.2 pounds (10000 grams) below tare during AUTO run, this alarm is triggered and Dryer stops (fatal). This alarm is generally caused by a missing Retention Hopper but may also be caused by dryer Retention Hopper load cells having been zero calibrated while material was in the Retention Hopper.

Solution: If Retention Hopper is missing replace Retention Hopper. If Retention Hopper is in place, ensure the hopper is empty and zero calibrate the load cells. If load cells are damaged, a zero calibration may detect this.

Problem: The throughput of the dryer has been exceeded.

This is an optional alarm (under alarms menu), defaulted to enabled. This alarm is triggered when the Retention Hopper low level has been reached before the vacuum timer has elapsed. This means demand for material has exceeded dried material supplied. This alarm is non-fatal, dryer continues to run.

Solution: This is caused by exceeding material demand.
Problem: Dryer failed to pull vacuum down to target vacuum pressure set in VPL parameter.

Dryer attempted to pull a vacuum down to target vacuum pressure within 120 seconds (default value in LVT parameter).

Possible causes and Solution: If dryer alarms, check: compressed air connection and pressure (dryer’s regulator should be reading 85psi). Check for debris in seals above and below Vacuum Chamber. Alarm may also have been caused by a vacuum leak. Contact Maguire technical support if cause is not found.

Problem: Material supplied to Vacuum Chamber is below minimum allowable weight.

This alarm is triggered by the VFA parameter (Vessel Fill Adjust) and pertains to filling the Vacuum Chamber. The VFA parameter is a two part parameter. The first three digits are the number of retries to fill the Vacuum Chamber (default 3 retries). Last two digits are the minimum allowable percent under the targeted maximum fill weight of the Vacuum Chamber (VTH parameter). After the third failed retry the “Low Batch” alarm is generated while the retries continue.

Solution:

Check material supply feeding the heating hopper. Check heating hopper material flow (sticking material, melted material, hard to flow regrind). Check Vacuum Chamber Fill Valve (butterfly valve below heating hopper). Check air pressure (80 psi).

Problem: Material has been in the retention hopper too long.

This alarm is triggered by the RAL parameter. When the Residence Alarm has been enabled, this alarm will sound if not enough material has been removed from the retention hopper in the time specified in the RAL parameter. For more information, see the RAL parameter on page 34.

Solution:

To prevent this alarm: decrease fill weight, or turn on Fill Weight Adjust (Material Setup menu).

Batch is complete

This alarm triggers at the end of a batch run, the end being defined as the time at which the retention hopper is depleted to the HHL parameter level after the final vacuum chamber dump of said batch run.

Material Shutdown

This alarm triggers if the Material Shortage alarm is set to "SHUTDOWN" and it is determined that the heating hopper has been fully depleted of material via the VFA parameter criteria. When this alarm triggers, the VBD enters a Shutdown state automatically. This alarm can be useful. For example: at the end of the day, one can intentionally run the heating hopper empty (by turning off its feed loader) and have the VBD automatically initiate a shut down at the appropriate time.
Material Ready

If the Material Ready alarm is enabled under the "Alarm Setup" menu, this alarm will trigger after the first and only first batch of material has completed a full vacuum cycle. After 15 seconds, the audible portion of this alarm will automatically silence. The first batch of material will remain under vacuum indefinitely until this alarm is cleared. There are two main purposes of this alarm:

1. To alert the operator that dry material is ready for the process.
2. To act as a hold-back, when necessary, giving the operator additional time to prepare the process.

Auto Shutdown

This alarm triggers when an Auto Shutdown, that is, a shut down at a predetermined time, has commenced. "Commencement" is defines as the time at which the final vacuum chamber fill has occurred.

Heating Hopper Material

On VBD’s with an optional Heating Hopper Level sensor, this alarm triggers when the "HH Mat. Level" alarm is enabled under the "Alarm Setup" menu and the level in the heating hopper has dropped below the HHA parameter value.

Material Temp

When the Material Temp alarm is enabled under the "Alarm Setup" menu, during any instance where the Heating Hopper is called upon to dispense material into the vacuum chamber and the T2 (heating hopper exit) temperature is below the ESM parameter level, this alarm will trigger. Its purpose is to alert the operator that insufficient heating has occurred, most likely from a process throughput that exceeds the capacity of the VBD.
Print Setup - Logs and Print Outputs

The Print setup is available from the Setup menu. Print Setup prints to USB and has the following options:

Event Log - Enable/Disable, When enabled, prints events to the log file.

Interval - Seconds (default 60s), Automatic time interval to print VBD information to USB.

Content - Detail/Standard, Level of detail printed to the log file.

Print All - Prints the Alarm Log, Event Log and Parameters to a USB flash drive.

Print Parameters - Prints the full parameter and parameter values as well as other information list to the USB flash drive.

Print Event Log - A combination of machine status lines at defined intervals as well as mechanical events as they occur.

Print Alarm Log - Prints any alarms recorded since the alarm log was last cleared to USB.

Clear Event Log - Clears all events from the event log in memory.

Clear Alarm Log - Clears all alarms from the event log in memory.

How to print the Event Log, Parameters, or Alarm Log

To print the Alarm Log, Parameters or Event Log a USB Flash Drive must be plugged into the VBD-150.

Press: to toggle the Mode Selection to Setup Mode (Gears Icon).

Enter: the 5-digit password. (Default password is 22222). Use the ▲▼ buttons to adjust the digit. Press ENTER to move to the next digit and to finish.

Press: the ▼ button several times to move down to the option “Print Setup”. Press ENTER to select.

Press: Press the ▼ button to move down to one of the print options.

Press: ENTER to print the selected option.

Files will be created on the flash drive in the root of the drive.

VBDALARM.LOG - Alarm Log
VBDEVENT.LOG - Event Log
VBDPARAM.TXT - Parameter Report

Display will show:

```
MODE=SETUP
ENTER PASSWORD
0_ _ _ _
```

Display will show:

```
PRINT SETUP BACK
► Event Log: ENABLE
 Interval: 60s
 Content: DETAIL▼
```

Display will show:

```
PRINT SETUP BACK
► Print All ▲
 Print Parameters▼
 Print Event Log▼
```

Display will show one or all of the following:

```
PRINTING EVENT LOG
 -=- WAIT -=-
```

```
PRINTING ALARM LOG
 -=- WAIT -=-
```

```
PRINTING PARAMETERS
 -=- WAIT -=-
```
Logs and Print Outputs

Alarm Log - Display of the most recent log outputs. Toggle Select button to Alarm Log.

Event Log - The Event log is written to a file on a USB drive. To write the log file, toggle to wrench mode, Print Setup, Print Event Log. Each log entry is a single line of information that was recorded about the Dryer at the moment the line in the log was written.

The following is a description of the columns of information in a log. Note: line wrap in the manual due to page space constraints. Actual log file continues as a single line with a carriage return after “ABS:”

<table>
<thead>
<tr>
<th>Column</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>08-20-2014</td>
<td>Date of the log (the date is stored in the Dryer).</td>
</tr>
<tr>
<td>2</td>
<td>10:10:08</td>
<td>Time of the log.</td>
</tr>
<tr>
<td>3</td>
<td>MODE: PHT</td>
<td>Current mode of the dryer when the log entry was written.</td>
</tr>
<tr>
<td>4</td>
<td>T1s: 180F</td>
<td>T1s (Heating Hopper Inlet temperature Setpoint)</td>
</tr>
<tr>
<td>5</td>
<td>T1a: 90F</td>
<td>T1a (Heating Hopper Inlet Actual Temperature)</td>
</tr>
<tr>
<td>6</td>
<td>H1: 0.0</td>
<td>Heating Hopper Heater Duty Cycle</td>
</tr>
<tr>
<td>7</td>
<td>T2s: 180F</td>
<td>Dry Purge Air Temperature Setpoint</td>
</tr>
<tr>
<td>8</td>
<td>T2a: 77F</td>
<td>Dry Purge Air Actual Temperature</td>
</tr>
<tr>
<td>9</td>
<td>H2: 7.5</td>
<td>Dry Purge Heater Duty Cycle</td>
</tr>
<tr>
<td>10</td>
<td>T3: 84F</td>
<td>Heating Hopper Outlet Air Temperature</td>
</tr>
<tr>
<td>11</td>
<td>T4: 78F</td>
<td>Optional T4 Material Exit Temperature</td>
</tr>
<tr>
<td>12</td>
<td>BLW: 0.00ma</td>
<td>Blower Speed Reference (4-20 mA)</td>
</tr>
<tr>
<td>13</td>
<td>LS: 98%</td>
<td>Heating Hopper Level Sensor (percent)</td>
</tr>
<tr>
<td>14</td>
<td>VTIME: 00:00/20:00</td>
<td>Vacuum Time (actual/setpoint in seconds)</td>
</tr>
<tr>
<td>15</td>
<td>ABS: 753mmHg</td>
<td>Vacuum Chamber Pressure</td>
</tr>
<tr>
<td>16</td>
<td>VT LC: 7</td>
<td>Vacuum Chamber Loadcell Reading (weight in lbs or kgs)</td>
</tr>
<tr>
<td>17</td>
<td>RH LC: 6</td>
<td>Retention Hopper Loadcell Reading (weight in lbs or kgs)</td>
</tr>
<tr>
<td>18</td>
<td>THROUGHPUT: 0</td>
<td>Throughput (lbs or kgs / hour)</td>
</tr>
</tbody>
</table>

Example of a VBD Event Log:

VBD Event Log
MODEL: 1000
CPU Firmware: N0819B
I/O Firmware: N0819B
Serial#: 000000-00

08-20-2014 12:25:17

08-20-2014 10:10:04 | *** OPERATOR START ***
08-20-2014 10:10:05 | *** DRYER STARTED ***
08-20-2014 10:10:05 | *** BLOWER STARTED ***
08-20-2014 10:10:05 | *** DRYPURGE SUPPLY VALVE: ON ***
08-20-2014 10:10:05 | *** HEATER FAIL-SAFE: HIGH ***
08-20-2014 10:10:05 | *** BLOWER STATUS: STARTED ***

08-20-2014 10:10:08 | MODE: PHT | T1s: 180F | T1a: 90F | H1: 0.0 | T2s: 180F | T2a: 77F | H2: 7.5 | T3: 84F | T4: 78F | BLW: 0.00ma | LS: 98% | VTIME: 00:00/20:00 | ABS: 753mmHg | VT LC: 7 | RH LC: 6 | THROUGHPUT: 0

08-20-2014 10:10:15 | *** HEATING HOPPER HEATER STARTED ***
08-20-2014 10:10:23 | MODE: PHT | T1s: 180F | T1a: 90F | H1: 10.8 | T2s: 180F | T2a: 78F | H2: 7.5 | T3: 85F | T4: 78F | BLW: 0.00ma | LS: 98% | VTIME: 00:00/20:00 | ABS: 753mmHg | VT LC: 7 | RH LC: 6 | THROUGHPUT: 0

08-20-2014 10:10:39 | MODE: PHT | T1s: 180F | T1a: 112F | H1: 20.3 | T2s: 180F | T2a: 80F | H2: 14.3 | T3: 87F | T4: 78F | BLW: 0.00ma | LS: 98% | VTIME: 00:00/20:00 | ABS: 753mmHg | VT LC: 7 | RH LC: 6 | THROUGHPUT: 0

08-20-2014 10:10:54 | MODE: PHT | T1s: 180F | T1a: 145F | H1: 23.0 | T2s: 180F | T2a: 82F | H2: 14.3 | T3: 88F | T4: 78F | BLW: 0.00ma | LS: 98% | VTIME: 00:00/20:00 | ABS: 753mmHg | VT LC: 7 | RH LC: 6 | THROUGHPUT: 0

08-20-2014 10:11:09 | MODE: PHT | T1s: 180F | T1a: 165F | H1: 22.0 | T2s: 180F | T2a: 85F | H2: 20.3 | T3: 89F | T4: 79F | BLW: 0.00ma | LS: 98% | VTIME: 00:00/20:00 | ABS: 753mmHg | VT LC: 7 | RH LC: 6 | THROUGHPUT: 0

08-20-2014 10:11:24 | MODE: PHT | T1s: 180F | T1a: 172F | H1: 21.2 | T2s: 180F | T2a: 88F | H2: 20.3 | T3: 89F | T4: 79F | BLW: 0.00ma | LS: 98% | VTIME: 00:00/20:00 | ABS: 753mmHg | VT LC: 7 | RH LC: 10 | THROUGHPUT: 0

08-20-2014 10:11:39 | MODE: PHT | T1s: 180F | T1a: 174F | H1: 21.2 | T2s: 180F | T2a: 91F | H2: 25.5 | T3: 89F | T4: 80F | BLW: 0.00ma | LS: 98% | VTIME: 00:00/20:00 | ABS: 753mmHg | VT LC: 7 | RH LC: 10 | THROUGHPUT: 0
Parameter Printout

The Parameter Printout is written to a file on a USB drive. To write the parameter printout, toggle to wrench mode, Print Setup, Print Parameters.

First column is the parameter’s description.
Second column is the parameter’s 3-letter acronym.
Third column is the parameter’s setting in RAM, which is the currently loaded user settings.
Fourth column is the parameter’s default setting in ROM (Read Only Memory). This is the factory default.
Fifth column is the lower limit of the parameter’s value.
Sixth column is the upper limit of the parameter’s value.
Seventh column is the units of the parameter.

Example of a Parameter Printout:

VBD-1000 Parameters

Mon 08/15/2016 17:04
CPU Firmware: P0812A
I/O Firmware: P0812A
CPU Bootloader: 1.03
I/O Bootloader: 1.03
Serial #: 000000-00
MAC Address: 00:1C:1A:00:4B:0F

<table>
<thead>
<tr>
<th>INDEX</th>
<th>NAME</th>
<th>ABBR</th>
<th>RAM</th>
<th>DFT</th>
<th>LO LIMIT</th>
<th>HI LIMIT</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Blower Delay Time</td>
<td>BDT</td>
<td>01002</td>
<td>01002</td>
<td>00000</td>
<td>99999</td>
<td>Second</td>
</tr>
<tr>
<td>B2</td>
<td>VFD Low Limit</td>
<td>BLF</td>
<td>00025</td>
<td>00025</td>
<td>00025</td>
<td>00060</td>
<td>Freq</td>
</tr>
<tr>
<td>B3</td>
<td>VFD High Limit</td>
<td>BHF</td>
<td>00060</td>
<td>00060</td>
<td>00050</td>
<td>00070</td>
<td>Freq</td>
</tr>
<tr>
<td>B4</td>
<td>VFD Drive</td>
<td>BDF</td>
<td>00040</td>
<td>00040</td>
<td>00000</td>
<td>65535</td>
<td>Freq</td>
</tr>
<tr>
<td>B5</td>
<td>VFD Zero Level</td>
<td>BZL</td>
<td>00045</td>
<td>00045</td>
<td>00000</td>
<td>65535</td>
<td>Percent</td>
</tr>
<tr>
<td>B6</td>
<td>VFD Level Adjustment</td>
<td>BLA</td>
<td>00025</td>
<td>00025</td>
<td>00025</td>
<td>00060</td>
<td>Freq</td>
</tr>
<tr>
<td>B7</td>
<td>VFD Heat Throttle</td>
<td>BHT</td>
<td>00100</td>
<td>00100</td>
<td>00000</td>
<td>65535</td>
<td>Percent</td>
</tr>
<tr>
<td>B8</td>
<td>VFD Air Flow Cutback</td>
<td>BAC</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>65535</td>
<td>Freq/Sec</td>
</tr>
<tr>
<td>B9</td>
<td>VFD Temp. Cutback</td>
<td>BTC</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>65535</td>
<td>Freq/Deg</td>
</tr>
<tr>
<td>B10</td>
<td>VFD Throttle Adjust</td>
<td>BTA</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>65535</td>
<td>Freq/Sec</td>
</tr>
</tbody>
</table>

Dispensing

<table>
<thead>
<tr>
<th>INDEX</th>
<th>NAME</th>
<th>ABBR</th>
<th>RAM</th>
<th>DFT</th>
<th>LO LIMIT</th>
<th>HI LIMIT</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Vac. Cham. Hi Level</td>
<td>VCH</td>
<td>00300</td>
<td>00300</td>
<td>00000</td>
<td>00350</td>
<td>Weight</td>
</tr>
<tr>
<td>D2</td>
<td>Vac. Cham. Low Level</td>
<td>VCL</td>
<td>00025</td>
<td>00025</td>
<td>00000</td>
<td>00100</td>
<td>Weight</td>
</tr>
<tr>
<td>D3</td>
<td>Ret. Hop. Hi Level</td>
<td>RHH</td>
<td>00375</td>
<td>00375</td>
<td>00000</td>
<td>00385</td>
<td>Weight</td>
</tr>
<tr>
<td>D4</td>
<td>Ret. Hop. Low Level</td>
<td>RHL</td>
<td>00025</td>
<td>00025</td>
<td>00000</td>
<td>00227</td>
<td>Weight</td>
</tr>
<tr>
<td>D5</td>
<td>Bulk Density</td>
<td>BLK</td>
<td>00035</td>
<td>00035</td>
<td>00000</td>
<td>65535</td>
<td>Weight</td>
</tr>
<tr>
<td>D6</td>
<td>Vac.Cham. Fill Rate</td>
<td>VFR</td>
<td>12000</td>
<td>12000</td>
<td>02500</td>
<td>15000</td>
<td>Gram/Sec</td>
</tr>
<tr>
<td>D7</td>
<td>Vac.Cham. Dump Rate</td>
<td>VDR</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>15000</td>
<td>Gram/Sec</td>
</tr>
<tr>
<td>D8</td>
<td>Chamber Fill Time</td>
<td>VFT</td>
<td>00025</td>
<td>00025</td>
<td>00000</td>
<td>99999</td>
<td>Second</td>
</tr>
<tr>
<td>D9</td>
<td>Chamber Dump Time</td>
<td>VDT</td>
<td>00060</td>
<td>00060</td>
<td>00000</td>
<td>99999</td>
<td>Second</td>
</tr>
<tr>
<td>D10</td>
<td>Fill Lag Time</td>
<td>FLA</td>
<td>00400</td>
<td>00400</td>
<td>00000</td>
<td>01000</td>
<td>Time</td>
</tr>
<tr>
<td>D11</td>
<td>Dump Lag Time</td>
<td>DLA</td>
<td>00300</td>
<td>00300</td>
<td>00000</td>
<td>01000</td>
<td>Time</td>
</tr>
<tr>
<td>D12</td>
<td>Vacuum Gate Delay</td>
<td>VGD</td>
<td>00404</td>
<td>00404</td>
<td>00000</td>
<td>65535</td>
<td>Second</td>
</tr>
<tr>
<td>D13</td>
<td>Chamber Fill Adjust</td>
<td>VFA</td>
<td>00450</td>
<td>00450</td>
<td>00000</td>
<td>65535</td>
<td>Cnt/Pct</td>
</tr>
<tr>
<td>D14</td>
<td>HH Dump Delay</td>
<td>HDD</td>
<td>00015</td>
<td>00015</td>
<td>00000</td>
<td>65535</td>
<td>Second</td>
</tr>
<tr>
<td>D15</td>
<td>Vac. Dump Threshold</td>
<td>VCT</td>
<td>00250</td>
<td>00250</td>
<td>00000</td>
<td>65535</td>
<td>Gram/Sec</td>
</tr>
<tr>
<td>D16</td>
<td>Chamber Dump Retries</td>
<td>CDR</td>
<td>05003</td>
<td>05003</td>
<td>00000</td>
<td>10099</td>
<td>Perc/Ret</td>
</tr>
<tr>
<td>D17</td>
<td>Residence Alarm</td>
<td>RAL</td>
<td>20120</td>
<td>20120</td>
<td>00000</td>
<td>65599</td>
<td>Wt/Min</td>
</tr>
<tr>
<td>D18</td>
<td>Batch Size</td>
<td>BCH</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>65535</td>
<td>Weight</td>
</tr>
<tr>
<td>D19</td>
<td>Loader Trip Point</td>
<td>LTP</td>
<td>00050</td>
<td>00050</td>
<td>00000</td>
<td>00250</td>
<td>Weight</td>
</tr>
<tr>
<td>D20</td>
<td>Ldr. Thruput Cutoff</td>
<td>LTC</td>
<td>00005</td>
<td>00005</td>
<td>00000</td>
<td>65535</td>
<td>Wt/Min</td>
</tr>
<tr>
<td>D21</td>
<td>Heat Hopper Volume</td>
<td>HHV</td>
<td>00205</td>
<td>00205</td>
<td>00000</td>
<td>65535</td>
<td>Volume</td>
</tr>
<tr>
<td>D22</td>
<td>Heat Hopper Hi Level</td>
<td>HHU</td>
<td>00095</td>
<td>00095</td>
<td>00000</td>
<td>65535</td>
<td>Percent</td>
</tr>
<tr>
<td>D23</td>
<td>HH Level Alarm</td>
<td>HLA</td>
<td>00050</td>
<td>00050</td>
<td>00000</td>
<td>00100</td>
<td>Percent</td>
</tr>
</tbody>
</table>

Heater

<table>
<thead>
<tr>
<th>INDEX</th>
<th>NAME</th>
<th>ABBR</th>
<th>RAM</th>
<th>DFT</th>
<th>LO LIMIT</th>
<th>HI LIMIT</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1-1</td>
<td>Preheat Temperature</td>
<td>PTS</td>
<td>00150</td>
<td>00150</td>
<td>00074</td>
<td>00375</td>
<td>Degree</td>
</tr>
<tr>
<td>H1-2</td>
<td>Preheat Time</td>
<td>PHT</td>
<td>00060</td>
<td>00060</td>
<td>0001</td>
<td>00999</td>
<td>Minute</td>
</tr>
<tr>
<td>H1-3</td>
<td>Preheat Targ. Delta</td>
<td>PTD</td>
<td>00030</td>
<td>00030</td>
<td>00000</td>
<td>65535</td>
<td>Degree</td>
</tr>
<tr>
<td>H1-4</td>
<td>Heat1 Temp Set-Point</td>
<td>PTS</td>
<td>00150</td>
<td>00150</td>
<td>00074</td>
<td>00375</td>
<td>Degree</td>
</tr>
<tr>
<td>H1-5</td>
<td>Heat1 Proportional</td>
<td>PT1</td>
<td>00040</td>
<td>00040</td>
<td>00000</td>
<td>00100</td>
<td>Term</td>
</tr>
<tr>
<td>H1-6</td>
<td>Heat1 Derivative</td>
<td>DT1</td>
<td>00015</td>
<td>00015</td>
<td>00000</td>
<td>00100</td>
<td>Term</td>
</tr>
</tbody>
</table>
Heat Settings:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Unit</td>
<td>Fahrenheit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preheat Mode</td>
<td>Timed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Logging Time</td>
<td>ELT</td>
<td>00060</td>
<td>00060</td>
<td>00001</td>
<td>Second</td>
</tr>
</tbody>
</table>

Alarm Flags:

- Material Shortage Alarm: Warn
- Material Ready: Off
- Material Temp: Off
- HH Level Alarm: Off
- Residence: Off
- Throughput Alarm: On
- Dump Retry: On

Display Flags:

- Auto Shutdown: Off
- Batch Mode: Off
- Cycle Info: On
- Display: Temp.
- Fill Time: On
- Dump Time: On
- I/O Status: On
- Preheat Temp: Off
- Preheat Temp.: On
- Residence Time: Off
- Screen Timeout: Off
- Vacuum Time: On

Heat Settings:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat1 Update Time</td>
<td>UT1</td>
<td>00415</td>
<td>00415</td>
<td>00000</td>
<td>Sec/Sec</td>
</tr>
<tr>
<td>Heat1 OverTarg Alarm</td>
<td>OT1</td>
<td>06006</td>
<td>06006</td>
<td>00000</td>
<td>Sec/Deg</td>
</tr>
<tr>
<td>Heat1 No Heat Alarm</td>
<td>NH1</td>
<td>00090</td>
<td>00090</td>
<td>00000</td>
<td>Second</td>
</tr>
<tr>
<td>Heat1 Set-Point Off.</td>
<td>SO1</td>
<td>03002</td>
<td>03002</td>
<td>00000</td>
<td>Sec/Deg</td>
</tr>
<tr>
<td>Heat1 Max. Percent</td>
<td>MP1</td>
<td>00100</td>
<td>00100</td>
<td>00000</td>
<td>Percent</td>
</tr>
<tr>
<td>Heat1 Restart Offset</td>
<td>RO1</td>
<td>05040</td>
<td>05040</td>
<td>00000</td>
<td>Pct/Sec</td>
</tr>
<tr>
<td>Heat1 OverTarg Alarm</td>
<td>OT1</td>
<td>06006</td>
<td>06006</td>
<td>00000</td>
<td>Sec/Deg</td>
</tr>
<tr>
<td>Heat1 No Heat Alarm</td>
<td>NH1</td>
<td>00090</td>
<td>00090</td>
<td>00000</td>
<td>Second</td>
</tr>
<tr>
<td>Heat1 Set-Point Off.</td>
<td>SO1</td>
<td>03002</td>
<td>03002</td>
<td>00000</td>
<td>Sec/Deg</td>
</tr>
<tr>
<td>Heat1 Max. Percent</td>
<td>MP1</td>
<td>00100</td>
<td>00100</td>
<td>00000</td>
<td>Percent</td>
</tr>
<tr>
<td>Heat1 Restart Offset</td>
<td>RO1</td>
<td>05040</td>
<td>05040</td>
<td>00000</td>
<td>Pct/Sec</td>
</tr>
<tr>
<td>Max Temp Set-Point</td>
<td>MAX</td>
<td>00350</td>
<td>00350</td>
<td>00000</td>
<td>Degree</td>
</tr>
<tr>
<td>Energy Savings Mode</td>
<td>ESM</td>
<td>00150</td>
<td>00150</td>
<td>00000</td>
<td>Degree</td>
</tr>
<tr>
<td>Energy Savings Time</td>
<td>EST</td>
<td>00050</td>
<td>00050</td>
<td>00000</td>
<td>Minute</td>
</tr>
<tr>
<td>Ramp Settings</td>
<td>RMP</td>
<td>52036</td>
<td>52036</td>
<td>00000</td>
<td>Min/Deg</td>
</tr>
<tr>
<td>Cool-Down Temp.</td>
<td>CTM</td>
<td>00120</td>
<td>00120</td>
<td>00032</td>
<td>Degree</td>
</tr>
<tr>
<td>Cool-Down Timer</td>
<td>CTR</td>
<td>00060</td>
<td>00060</td>
<td>00000</td>
<td>Minutes</td>
</tr>
<tr>
<td>Heat2 Temp Set-Point</td>
<td>PGS</td>
<td>00150</td>
<td>00150</td>
<td>00074</td>
<td>Degree</td>
</tr>
<tr>
<td>Heat2 Proportional</td>
<td>PT2</td>
<td>00030</td>
<td>00030</td>
<td>00000</td>
<td>Term</td>
</tr>
<tr>
<td>Heat2 Derivative</td>
<td>DT2</td>
<td>00015</td>
<td>00015</td>
<td>00000</td>
<td>Term</td>
</tr>
<tr>
<td>Heat2 Update Time</td>
<td>UT2</td>
<td>00830</td>
<td>00830</td>
<td>00000</td>
<td>Second</td>
</tr>
<tr>
<td>Heat2 OverTarg Alarm</td>
<td>OT2</td>
<td>09006</td>
<td>09006</td>
<td>00000</td>
<td>Sec/Deg</td>
</tr>
<tr>
<td>Heat2 No Heat Alarm</td>
<td>NH2</td>
<td>00180</td>
<td>00180</td>
<td>00000</td>
<td>Second</td>
</tr>
<tr>
<td>Heat2 Set-Point Off.</td>
<td>SO2</td>
<td>00006</td>
<td>00006</td>
<td>00000</td>
<td>Pct/Sec</td>
</tr>
<tr>
<td>Heat2 Fixed Output</td>
<td>FO2</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>Percent</td>
</tr>
<tr>
<td>Dry Purge Delay</td>
<td>DPD</td>
<td>00003</td>
<td>00003</td>
<td>00000</td>
<td>Second</td>
</tr>
<tr>
<td>Purge and Shutdown</td>
<td>PST</td>
<td>00020</td>
<td>00020</td>
<td>00000</td>
<td>Minutes</td>
</tr>
</tbody>
</table>

Load Cell:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loadcell Stable Wt.</td>
<td>KDF</td>
<td>00200</td>
<td>00006</td>
<td>00000</td>
<td>65535</td>
</tr>
<tr>
<td>Loadcell Stable Time</td>
<td>LST</td>
<td>00100</td>
<td>00100</td>
<td>00000</td>
<td>65535</td>
</tr>
<tr>
<td>Loadcell Zero</td>
<td>LZ2</td>
<td>01000</td>
<td>01000</td>
<td>00000</td>
<td>65535</td>
</tr>
<tr>
<td>Weight Settle Time</td>
<td>WST</td>
<td>01005</td>
<td>01005</td>
<td>00000</td>
<td>65535</td>
</tr>
<tr>
<td>Loadcell 1 Zero</td>
<td>LZ1</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>65535</td>
</tr>
<tr>
<td>Loadcell 2 Zero</td>
<td>LZ2</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>65535</td>
</tr>
</tbody>
</table>

Vacuum:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum Time Setting</td>
<td>VTS</td>
<td>05020</td>
<td>05020</td>
<td>00001</td>
<td>65535</td>
</tr>
<tr>
<td>Vac. Pressure Low</td>
<td>VPL</td>
<td>00125</td>
<td>00125</td>
<td>00000</td>
<td>65535</td>
</tr>
<tr>
<td>Vac. Pressure Delta</td>
<td>VPD</td>
<td>00020</td>
<td>00020</td>
<td>00000</td>
<td>65535</td>
</tr>
<tr>
<td>Vac. Shutdown Offset</td>
<td>VSO</td>
<td>00060</td>
<td>00060</td>
<td>00000</td>
<td>65535</td>
</tr>
<tr>
<td>Low Vacuum Timeout</td>
<td>LVT</td>
<td>00150</td>
<td>00150</td>
<td>00000</td>
<td>65535</td>
</tr>
<tr>
<td>No Vacuum Timeout</td>
<td>NVT</td>
<td>00345</td>
<td>00345</td>
<td>00000</td>
<td>65535</td>
</tr>
<tr>
<td>Cham. Purge Timer</td>
<td>VPT</td>
<td>35240</td>
<td>35240</td>
<td>00000</td>
<td>65535</td>
</tr>
<tr>
<td>Cham. Purge Interval</td>
<td>VPI</td>
<td>35240</td>
<td>35240</td>
<td>00000</td>
<td>65535</td>
</tr>
<tr>
<td>Atmospheric Pressure</td>
<td>ATM</td>
<td>00760</td>
<td>00760</td>
<td>00000</td>
<td>65535</td>
</tr>
</tbody>
</table>

System:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Logging Time</td>
<td>ELT</td>
<td>00006</td>
<td>00006</td>
<td>00001</td>
<td>65535</td>
</tr>
</tbody>
</table>
Energy Saver Off
Ramp Off
DryPurge Temp. Auto

Misc. Settings:

Auto-Fill Adjust Off
HH Level Sensor Off
Loader 1 Off
Loader 2 Off
Loader 2 Mode Thruput
Purge Chamber On

Admin. Settings:

Blower VFD
T4 On
T5 Off

LOADCELL CALIBRATION

<table>
<thead>
<tr>
<th>NAME</th>
<th>ZERO</th>
<th>DELTA</th>
<th>FULL</th>
<th>LAST ZERO</th>
<th>LAST FULL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH LC: 3303829 1588575</td>
<td>15422</td>
<td>Fri 06/17/2016 11:01</td>
<td>Thu 01/01/1970 00:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT LC: 3364083 1408275</td>
<td>16147</td>
<td>Fri 06/17/2016 11:01</td>
<td>Thu 01/01/1970 00:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Updating the VBD Firmware

When the VBD control panel is turned on, the first screen displayed will show the current firmware version. If necessary the firmware in the VBD can be updated using the USB port located below the control panel. Maguire can supply VBD firmware updates. The following instructions detail how to do a firmware update.

Copy the new firmware update into a USB flash drive. (do not put in a directory)

Insert the USB Flash drive into the USB port on the VBD.

Press SELECT To highlight Setup Mode (gears icon).

Press ENTER Display will say:
MODE=SETUP
ENTER PASSWORD 0 _ _ _ _

Enter 2222 Default password is 22222. Use the ▲▼ buttons to adjust the number. Press ENTER to advance to the next digit.

Press to scroll the display down to System.

Press ENTER to select the System menu.

Press to scroll the display down to Update Firmware.

Press ENTER The display will show:
Reading from USB WAIT
and then display the update version found on the drive.

NOTE: If the VBD is not able to read from the Flash Drive you will see this message: Error: No Files Found. Press BACK and try again or try a different Flash Drive.

Press to select the XUF file found on the Flash Drive.

Press ENTER to select the firmware update. If more than one .XUF file is present, use the ▼ to scroll down to the firmware bin file you want to use. The display will show: Update To: VDxxxxxx.XUF Press Any Key to Update Firmware

Press ENTER to start the update.

The display will show progress in transferring to the internal SD card, then it will show progress in verifying the update file. Then the controller will prompt: “Please toggle power to start the update process.” At this time, power off the controller then on. When the controller restarts the display will show progress in reflashing to the new firmware. When complete, the display will show: UPDATES COMPLETE Please toggle power. At this time turn off power, then turn back on.

Further software update information
Software updates can be supplied electronically, via email or by download. Software updates are named according to their date of release. For instance VDN0331A.BIN can be interpreted as VD=Vacuum Dryer, N=2014, 03=March, 31=March 31st, A=the first revision for that day. During the update process detailed above, new software found on the USB flash drive is first copied to an internally mounted SD card. From the SD card, the software is then loaded into the VBD. If there is ever a problem with the VBD and the USB port cannot be used or the VBD software is corrupted and cannot load new software through the menu, new software can be acquired from Maguire and renamed UPDTFILE.BIN. This renamed software can be loaded onto the internal SD card and re-inserted within the VBD. When the VBD is turned on, this UPDTFILE.BIN file will be automatically loaded into the VBD, restoring the software.
General Information

VBD-1000 Technical Specifications

SCOPE
- Provide up to 1,000 pounds per hour (454 kg/hr) of dry material to an injection perform process utilizing energy efficient vacuum drying technology. Drying temperature will be 350º F (185º C) with a final moisture level of 50 ppm or less, and an IV range of 0.82 ±0.02

POWDER REQUIREMENTS
- Voltage: 480 Vac, 3 Phase, 60 Hz or 400 Vac, 3 Phase, 50 Hz
- FLA: 60
- Disconnect: 100 Amp Fused at 70 Amps
- Air: 85 psi or 6 bar
- Heating Element: Primary: 40 Kw, Secondary: 3 kW (purge circuit)
- Blower: 10 HP, 600 scfm @ 40" water 23" dia. Cincinnati centrifical w/ Variable Frequency Drive

HEATING HOPPER
- Capacity: 1,000 lbs (454 kg)
- Double insulated construction, 4” of R-15 insulation
- Large Access Door, 18” x 18”
- Diffuser cone removable without tools
- 304 Stainless steel internal wall construction, material contact

VACUUM CHAMBER
- Capacity: 400 lb (180 kg)
- Rail mounted for ease of access or removal
- Double insulated construction, 4” of R-7.5 insulation
- Access Hatch, insulated glass with captive air gap insulation
- 304 Stainless steel internal wall construction, material contact
- Cam-lock fitting on vacuum connection
- Unions on most air connections for ease of maintenance
- Adjustable height, paddle style, material level control
- V-band clamps on major connections for quick access

MATERIAL SHUT-OFF / VACUUM VALVE
- Single assembly dual acting valve
- Butterfly style material shut-off valve
- Swing valve for vacuum shut-off

RETENTION HOPPER
- Capacity: 400 lb (180 kg)
- Double insulated construction, 4” of R-7.5 insulation
- 304 Stainless steel internal wall construction, material contact
- Adjustable height, paddle style, material level control
CONTROLLER
- Microprocessor based control (Motorola 6812)
- 4 x 20 character Blue back lit display
- 4 Digit 1” high Red LED for display of Actual or Set Temperature
- Icon representation of function
- Flash Memory, SD card with micro capability
- Ethernet & USB ports
- Optional CANbus communications for remote / repeater control
- Anodized bezel

ELECTRICS
- Main Disconnect, 100 Amp, 70 AmpClass J fuses
- Altec Euro style disconnects
- Step down transformer with regulated DC power supply
- 70 cfm cooling fan, bottom vented
- 10 HP Centrifugal blower, 600 scfm w/ VFD
- RTD Inputs, 4: Heating hopper inlet, Heating hopper exit, Dry Purge inlet - Vacuum Vessel, Material exit - Retention Hopper

DRY AIR PURGE CIRCUIT
- Air filter regulator
- Coalescing Filter, 1/10th micron for removal of oil and fine particulates
- Exhaust Shut-off
- Compressed Air Dryer, 500 liter/min.
- 3,000 kW heater dedicated for dry air purge
 The majority of the dry air is directed to the retention hopper, the vacuum vessel
 receives a constant low volume of -40 dew point dry air. At the end of the vacuum cycle
 during atmospheric equalization a valve shifts to allow an inrush of dry air.

VACUUM CIRCUIT
- 8 Element, 3 Stage PIAB configuration for maximum effectiveness
- Expandable manifold to accept future add-ons
- 1” Electro-pneumatic check valve
- Balanced pressure regulator to insure the maximum efficient operational level

OTHER FEATURES
- Noise reduction assembly on blower inlet with filter

OPTIONS
- Magnehelic gauge on blower
- Power Analyzer
<table>
<thead>
<tr>
<th>line no.</th>
<th>parameter</th>
<th>Domestic/Canadian</th>
<th>European</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>value</td>
<td>units</td>
</tr>
<tr>
<td>1</td>
<td>maximum throughput</td>
<td>1000</td>
<td>lbs./hour</td>
</tr>
<tr>
<td>2</td>
<td>complete unit weight, empty</td>
<td>2950</td>
<td>lbs.</td>
</tr>
<tr>
<td>3</td>
<td>voltage</td>
<td>240/480/575</td>
<td>volts</td>
</tr>
<tr>
<td>4</td>
<td>full load amps (FLA)</td>
<td>107/53/45</td>
<td>amps</td>
</tr>
<tr>
<td>5</td>
<td>phase</td>
<td>3</td>
<td>Ø</td>
</tr>
<tr>
<td>6</td>
<td>frequency</td>
<td>60</td>
<td>Hz</td>
</tr>
<tr>
<td>7</td>
<td>compressed air supply line requirement (I.D.)</td>
<td>0.50</td>
<td>inches</td>
</tr>
<tr>
<td>8</td>
<td>compressed air supply pressure</td>
<td>85</td>
<td>psi</td>
</tr>
<tr>
<td>9</td>
<td>blower model</td>
<td>HP-6C23</td>
<td>Cincinnati</td>
</tr>
<tr>
<td>10</td>
<td>blower power</td>
<td>10</td>
<td>HP</td>
</tr>
<tr>
<td>11</td>
<td>blower airflow, nominal</td>
<td>600</td>
<td>SCFM</td>
</tr>
<tr>
<td>12</td>
<td>blower pressure, nominal</td>
<td>30</td>
<td>inches H2O</td>
</tr>
<tr>
<td>13</td>
<td>blower noise level</td>
<td>78</td>
<td>db(A)</td>
</tr>
<tr>
<td>14</td>
<td>primary heater power</td>
<td>35000</td>
<td>watts</td>
</tr>
<tr>
<td>15</td>
<td>purge heater power</td>
<td>2000</td>
<td>watts</td>
</tr>
<tr>
<td>16</td>
<td>maximum run temperature</td>
<td>375</td>
<td>°F</td>
</tr>
<tr>
<td>17</td>
<td>vacuum generator model</td>
<td>Xi 3-stage</td>
<td>PIAB</td>
</tr>
<tr>
<td>18</td>
<td>vacuum generator supply pressure</td>
<td>65</td>
<td>psi</td>
</tr>
<tr>
<td>19</td>
<td>vacuum generator air consumption*</td>
<td>38.8</td>
<td>SCFM</td>
</tr>
<tr>
<td>20</td>
<td>heating hopper material capacity, no drop tube</td>
<td>24.3</td>
<td>cu. ft.</td>
</tr>
<tr>
<td>21</td>
<td>heating hopper material capacity, 8” drop tube</td>
<td>20.6</td>
<td>cu. ft.</td>
</tr>
<tr>
<td>22</td>
<td>heating hopper absolute capacity</td>
<td>26.1</td>
<td>cu. ft.</td>
</tr>
<tr>
<td>23</td>
<td>vacuum tank material capacity</td>
<td>10</td>
<td>cu. ft.</td>
</tr>
<tr>
<td>24</td>
<td>vacuum tank absolute air capacity</td>
<td>17.4</td>
<td>cu. ft.</td>
</tr>
<tr>
<td>25</td>
<td>vacuum tank normal evacuation volume</td>
<td>12.8</td>
<td>cu. ft.</td>
</tr>
<tr>
<td>26</td>
<td>vacuum tank weight, empty</td>
<td>311</td>
<td>lbs.</td>
</tr>
<tr>
<td>27</td>
<td>retention hopper material capacity</td>
<td>11</td>
<td>cu. ft.</td>
</tr>
<tr>
<td>28</td>
<td>retention hopper absolute capacity</td>
<td>13.4</td>
<td>cu. ft.</td>
</tr>
<tr>
<td>29</td>
<td>retention hopper weight, empty</td>
<td>76</td>
<td>lbs.</td>
</tr>
</tbody>
</table>

* when running
Theory of Operation / Performance

THEORY OF VACUUM DRYING

Water boils at 212 F (100 C) degrees. However, this is only true at sea level, which is to say at standard atmospheric pressure, which is 14.7 pounds/sq in (1 bar), also expressed as 29.92 inches (760mm) of Mercury (Hg).

At lower pressures the boiling point of water is reduced.

Standard atmospheric pressure can support a column of Mercury 29.92 inches (760mm) high. If we pull a perfect vacuum above a column of Mercury, the mercury will rise in that column 29.92 inches and, for that reason, the number we can expect to read on the vacuum gauge, at full vacuum, is 29.92 inches. Lesser vacuums read lower numbers. No vacuum reads zero.

When water is subjected to a vacuum level of 25 inches (635mm) of mercury, it will boil at 133F (56C) degrees. When plastic pellets are heated to 160F (71C) degrees, or greater, and subjected to a vacuum of 25 inches (635mm), the water vapor within wants very much to boil. This increased molecular activity within the pellet and the greatly reduced pressure surrounding the pellet drives the moisture from the pellet in a remarkably short time. This then is the reason for the remarkable short drying time of a vacuum dryer.

PERFORMANCE

The true measure of a dryer's performance is determined by the moisture content of the resin after the dryer has done its job. Resin moisture content, however, is not easily measured, so dryer manufactures use other criteria to assure performance.

Conventional "desiccant" dryers use DEW POINT as a measure of performance. This is a measure of the dryness of the air passing over the resin, but not the dryness of the resin itself.

For example, for a particular resin, experience may tell us that 180f (82c) degree air dried to minus 40 dew point, and passed over the material for 4 hours, is sufficient to reduce the moisture content of that resin to the required level of dryness.

Since our VBD Dryer does NOT use dry air, we have no "dew point" to measure.

In our case, for the same resin, experience tells us that a vacuum of 25 inches (635mm) applied for 20 minutes to material that has been heated to 180f (82c) degrees, is sufficient to reduce the moisture content of that same resin to the correct level of dryness.

Therefore, just as desiccant driers assure dry material by measuring temperature and DEW POINT over time, we assure dry material by measuring temperature and VACUUM over time.

When we assure that a certain temperature has been reached and a certain vacuum level achieved for a correct length of time, we can then be assured the material is dry.

You may visually assess performance by monitoring temperature and vacuum levels yourself. Of course, the final test is in the quality of the product you manufacture. We welcome your comments and observations.
Warranty

MAGUIRE PRODUCTS offers THE MOST COMPREHENSIVE WARRANTY in the plastics auxiliary equipment industry. We warrant each MAGUIRE VBD DRYER manufactured by us to be free from defects in material and workmanship under normal use and service; our obligation under this warranty being limited to making good at our factory any Dryer which shall, within FIVE (5) YEARS after delivery to the original purchaser, be RETURNED intact to us, transportation charges PREPAID, and which our examination shall disclose to our satisfaction to have been thus defective; this warranty being expressly in lieu of all other warranties expressed or implied and of all other obligations or liabilities on our part, and MAGUIRE PRODUCTS neither assumes nor authorizes any other persons to assume for it any other liability in connection with the sale of its Dryers.

This warranty shall not apply to equipment repaired or altered outside MAGUIRE PRODUCTS INC. factory, unless such repair or alteration was, in our judgment, not responsible for the failure; nor which has been subject to misuse, negligence or accident, incorrect wiring by others, or installation or use not in accord with instructions furnished by Maguire Products, Inc.

Our liability under this warranty will extend only to equipment that is returned to our factory in Aston, Pennsylvania, PREPAID.

Please note that we always strive to satisfy our customers in whatever manner is deemed most expedient to overcome any problems they may have in connection with our equipment.

DISCLAIMER - PRODUCTION of FAULTY PRODUCT

This dryer is of a new design. We have had excellent results in all tests performed to date, but we HAVE NOT tested every material available to the plastics industry. We have not anticipated all possible materials, processing conditions, and requirements. We are not certain that our equipment will perform properly in all instances. You must observe and verify the performance level of this equipment in your plant as part of your overall manufacturing process. You must verify to your own satisfaction that this level of performance meets your requirements. We CAN NOT be responsible for losses due to product not dried correctly, even when due to equipment malfunction or design incorrect for your requirements; and/or any consequential losses due to our equipment not drying material to your requirements.

We will only be responsible to correct, repair, replace, or accept return for full refund, our equipment if it fails to perform as designed, or we have inadvertently misrepresented our equipment for your application. If for any reason this disclaimer is not acceptable, we will accept return of the equipment for full refund, including freight costs both ways.
VBD-1000 Recommended Spare Parts List

Note: it is recommended that items #1 - #8 be kept on hand by the maintenance department.

<table>
<thead>
<tr>
<th>Line Item</th>
<th>MPI p/n</th>
<th>Description</th>
<th>General Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>hf21-E</td>
<td>replacement filter element, blower intake</td>
<td>upper rear panel</td>
</tr>
<tr>
<td>2</td>
<td>8520-10</td>
<td>silicone seal, vacuum chamber dump valve</td>
<td>vacuum chamber</td>
</tr>
<tr>
<td>3</td>
<td>go-369V</td>
<td>o-ring, size 369, Viton</td>
<td>upper vacuum gate</td>
</tr>
<tr>
<td>4</td>
<td>go-364V</td>
<td>o-ring, size 364, Viton</td>
<td>lower vacuum gate</td>
</tr>
<tr>
<td>5</td>
<td>8520-03</td>
<td>vac. seal plate assy., vac. cham. dump valve</td>
<td>lower vacuum gate</td>
</tr>
<tr>
<td>6</td>
<td>nvD-seg</td>
<td>solenoid valve segment, 4-way, 24 VDC</td>
<td>main cabinet</td>
</tr>
<tr>
<td>7</td>
<td>nf-AW40f</td>
<td>filter element, for "AW30" series regulator</td>
<td>pneumatics cabinet</td>
</tr>
<tr>
<td>8</td>
<td>nf-AFM40f</td>
<td>filter element, for oil separator</td>
<td>pneumatics cabinet</td>
</tr>
</tbody>
</table>

Other Potential Replacement Parts

<table>
<thead>
<tr>
<th>Line Item</th>
<th>Description</th>
<th>General Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>es4TAT5 fuse, 60 amp class J, AJT60</td>
<td>electrical cabinet</td>
</tr>
<tr>
<td>10</td>
<td>ezd-.5t fuse, 1/2 amp time delay, Midget style</td>
<td>electrical cabinet</td>
</tr>
<tr>
<td>11</td>
<td>eg-.3E2 circuit breaker, .3 amp, E-trip, 2-pole</td>
<td>electrical cabinet</td>
</tr>
<tr>
<td>12</td>
<td>eg-10C2 circuit breaker, 10 amp, E-trip, 2-pole</td>
<td>electrical cabinet</td>
</tr>
<tr>
<td>13</td>
<td>eg-30C3 circuit breaker, 30 amp, C-trip, 3-pole</td>
<td>electrical cabinet</td>
</tr>
<tr>
<td>14</td>
<td>eg-60C3 circuit breaker, 60 amp, C-trip, 3-pole</td>
<td>electrical cabinet</td>
</tr>
<tr>
<td>15</td>
<td>es3RT2016 motor contactor, 3 pole, 20A, 24 VDC</td>
<td>electrical cabinet</td>
</tr>
<tr>
<td>16</td>
<td>esCGC32D motor contactor, 3 pole, 50A, 24 VDC</td>
<td>electrical cabinet</td>
</tr>
<tr>
<td>17</td>
<td>ehr09 relay, SS, 480V 25A, 24-265 VAC signal</td>
<td>electrical cabinet</td>
</tr>
<tr>
<td>18</td>
<td>ehr11 relay, SS, 480V 50A, 24-265 VAC signal</td>
<td>electrical cabinet</td>
</tr>
<tr>
<td>19</td>
<td>eRTD2-64 4-wire 100 ohm RTD, 1/8" dia. x 4" long</td>
<td>heating hopper</td>
</tr>
<tr>
<td>20</td>
<td>eRTD2-32 4-wire 100 ohm RTD, 1/8" dia. x 2" long</td>
<td>mat. outflow valve</td>
</tr>
<tr>
<td>21</td>
<td>elc100V load cell, 100 kg capacity</td>
<td>retention hopper</td>
</tr>
<tr>
<td>22</td>
<td>elc250V load cell, 250 kg capacity</td>
<td>vacuum chamber</td>
</tr>
<tr>
<td>23</td>
<td>esp-50 pressure switch, 50 psi set-point, 1/8" NPT</td>
<td>main cabinet</td>
</tr>
<tr>
<td>24</td>
<td>eabVBD-01 I/O circuit board</td>
<td>electrical cabinet</td>
</tr>
<tr>
<td>25</td>
<td>eabVBD-02 display / HMI circuit board</td>
<td>front control panel</td>
</tr>
<tr>
<td>26</td>
<td>eabVBD-03 pendant circuit board (.8" 4-digit numeric)</td>
<td>front control panel</td>
</tr>
<tr>
<td>27</td>
<td>nmd-09E replacement element, for membrane air dryer</td>
<td>pneumatics cabinet</td>
</tr>
<tr>
<td>28</td>
<td>eht35-40 tube heater, 35,000 watt 3-phase 400 VAC</td>
<td>main cabinet</td>
</tr>
<tr>
<td>29</td>
<td>eht35-48 tube heater, 35,000 watt 3-phase 480 VAC</td>
<td>main cabinet</td>
</tr>
<tr>
<td>30</td>
<td>ehsi-02 strobe light, red, magnetic base, 24VDC</td>
<td>electrical cabinet</td>
</tr>
<tr>
<td>31</td>
<td>ehb-2 piezo buzzer, 24VDC</td>
<td>electrical cabinet</td>
</tr>
<tr>
<td>32</td>
<td>esw-09H interlock handle, red/yellow pistol</td>
<td>electrical cabinet</td>
</tr>
<tr>
<td>33</td>
<td>ecf-120 cooling fan, 120mm, 106 CFM, 115VAC .24A</td>
<td>electrical cabinet</td>
</tr>
</tbody>
</table>
Wiring Diagrams

Low Voltage Wiring Diagram
DECLARATION OF CONFORMITY

2006/42/EC Machinery Directive
2014/30/EU EMC Directive

Name of manufacturer or supplier
Maguire Products Inc.

Full postal address including country of origin
11 Crozerville Rd, Aston, PA 19014, USA

Description of product
VBD-150, VBD-300

Name, type or model, batch or serial number
Model: VBD-150, VBD-300

Standards used, including number, title, issue date and other relative documents
EN4414 (2010); EN11201 (2010); EN12100 (2010); EN13849-1 (2015); EN13850 (2015); EN13857 (2008); EN14119 (2013); EN14120 (2015); EN60204-1 (AC:2010) and EN61310-1 (2008)

Name of Responsible Person within the EU - Mr Paul Edmondson (Director)

Full postal address if different from manufacturers
Maguire Europe: Tame Park, Tamworth, Staffs, B77 5DY, UK

Declaration

I declare that as the Manufacturer, the above information in relation to the supply / manufacture of this product, is in conformity with the stated standards and other related documents following the provisions of the above Directives and their amendments.

Signature of Manufacturer: ______________________________

Position Held: ______________________________

Date: ______________
Technical Support and Contact Information

Maguire Products Inc.
11 Crozerville Road
Aston, PA 19014
Tel: 610.459.4300
Fax: 610.459.2700
Email: info@maguire.com
Web: www.maguire.com

Maguire Europe
Tame Park
Tamworth
Staffordshire
B775DY
UK
Tel: +44 1827 265 850
Fax: +44 1827 265 855
Email: info@maguire-europe.com

Maguire Products Asia PTE LTD
Main Office
15 Changi North Street 1
#01-15, I-Lofts
Singapore 498765
Tel: 65 6848-7117
Fax: 65 6542-8577
E-mail: magasia@maguire-products.com.sg

MAGUIRE ITALIA SRL
Via Cile, 14
35127 Padova
ITALY
TEL +39 049 970 5429
FAX +39 049 971 1838
Email: italia@maguire-europe.com