VBD-150® / VBD-300® — suszarka próżniowa®

Niniejszy dokument jest tłumaczeniem oryginalnej instrukcji obsługi suszarek próżniowych Maguire VBD-150® i VBD-300®.

Copyright © 2017 Maguire Products Inc.

Informacje zawarte w niniejszym tłumaczeniu oryginalnej instrukcji obsługi, a także w oryginalnej instrukcji obsługi oraz wszelkich tłumaczeniach na inne języki stanowią własność firmy Maguire Products Inc. i nie mogą być kopiowane ani przesyłane w żadnej formie lub w żaden sposób bez wyraźnej pisemnej zgody firmy Maguire Products Inc.

Każda osoba obsługująca i konserwująca suszarki Maguire VBD-150® i VBD-300® powinna uważnie przeczytać niniejszą instrukcję obsługi. Firma Maguire Products Inc. nie przyjmuje odpowiedzialności za szkody lub usterki urządzeń wynikające z nieprzestrzegania niniejszych instrukcji obsługi.

Wszystkie osoby obsługujące ten sprzęt muszą dokładnie i ze zrozumieniem przeczytać niniejszą instrukcję obsługi, aby uniknąć błędów i zapewnić bezproblemową eksploatację sprzętu.

W przypadku jakichkolwiek problemów lub trudności ze sprzętem należy skontaktować się z firmą Maguire Products Inc. lub lokalnym dystrybutorem firmy Maguire.

Dane kontaktowe producenta

Maguire Products Inc.
11 Crozerville Road
Aston, PA. 19014

Telefon: 610 459 4300
Faks: 610 459 2700

Strona internetowa: http://www.maguire.com

Email: info@maguire.com
Dokładność informacji w niniejszym podręczniku

Podjęliśmy wszelkie starania, aby zapewnić poprawność i aktualność niniejszego podręcznika. Jednak zmiany technologiczne i produktowe mogą następować szybciej niż możliwe jest ponowne wydanie tej instrukcji. W uogólnieniu może upłynąć kilka miesięcy nim modyfikacje konstrukcji suszarki lub sposób obsługi oprogramowania zostaną uwzględnione w instrukcji. Data podana w stopce instrukcji umożliwia w przybliżeniu ustalenie jej aktualności. Analogicznie, posiadana suszarka mogła zostać wyprodukowana wcześniej, w związku z tym informacje w niniejszym podręczniku mogą być niedokładne ze względu na dostosowanie tej instrukcji do bieżącej linii suszarek (zgodnie z datą w stopce).

Zastrzegamy sobie prawo do wprowadzania takich zmian bez informowania i nie gwarantujemy, że instrukcja w całości odpowiada urządzeniu. Prosimy o informowanie o wykryciu wątpliwych lub błędnych informacji w tym podręczniku, co umożliwi nam naniesienie poprawek lub udzielenie prawidłowych informacji. Dodatkowo, na żądanie, udostępniamy aktualną wersję dowolnego z podręczników. Zapraszamy do przesyłania komentarzy i sugestii, w jaki sposób możemy poprawić niniejszą instrukcję.

Aby uzyskać dodatkowe informacje lub pobrać najnowsze wersje instrukcji lub jakiegokolwiek innego podręcznika Maguire, należy odwiedzić naszą stronę internetową lub skontaktować się z nami bezpośrednio.

Na stronie pod adresem: www.maguire.com

Maguire Products Inc.
Siedziba główna
11 Crozerville Road
Aston, PA 19014
Tel: 610 459 4300
Faks: 610 459 2700
Email: info@maguire.com

Maguire Europe
Tame Park
Tamworth
Staffordshire
B775DY
Tel: + 44 1827 265 850
Faks: + 44 1827 265 855
Email: info@maguire-europe.com

Maguire Products Asia PTE LTD
15 Changi North Street 1
#01-15, I-Lofts
Singapore 498765
Tel: 65 6848-7117
Faks: 65 6542-8577
Email: magasia@maguire-products.com.sg

Maguire Italy
Via Zancanaro 40
35020 Vigorovea (PD)
Tel: +39 049 970 54 29
Faks: +39 049 971 18 38
Email: info@maguire-italia.it

Komentarze i sugestie proszę przesyłać na adres: support@maguire.com
Spis treści

Instalacja

<table>
<thead>
<tr>
<th>Opis</th>
<th>Strona</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suszarka VBD-150</td>
<td>11</td>
</tr>
<tr>
<td>Połączenia zewnętrzne suszarki</td>
<td>19</td>
</tr>
<tr>
<td>Przyłącze sprężonego powietrza</td>
<td>19</td>
</tr>
<tr>
<td>Połączenia elektryczne</td>
<td>21</td>
</tr>
<tr>
<td>Ogólne informacje o suszarce</td>
<td>24</td>
</tr>
</tbody>
</table>

Uruchomienie i obsługa

<table>
<thead>
<tr>
<th>Opis</th>
<th>Strona</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrukcje uruchomienia i obsługi</td>
<td>27</td>
</tr>
<tr>
<td>„Pause“ [Wstrzymaj], „Wylaczenie“, „Automatyczne wyłączenie“, „Nagle zamknięcie“</td>
<td>29</td>
</tr>
<tr>
<td>Automat. wylaczenie</td>
<td>31</td>
</tr>
<tr>
<td>Tryb zaawansowany (ADV)</td>
<td>31</td>
</tr>
<tr>
<td>Zalecane temperatury suszenia</td>
<td>33</td>
</tr>
<tr>
<td>Opis opcji w menu</td>
<td>34</td>
</tr>
<tr>
<td>„Parametry“</td>
<td>42</td>
</tr>
<tr>
<td>Zmiananie parametrów</td>
<td>51</td>
</tr>
<tr>
<td>Tryb wsadu</td>
<td>52</td>
</tr>
<tr>
<td>Konfiguracja komunikacji</td>
<td>53</td>
</tr>
</tbody>
</table>

Konserwacja

<table>
<thead>
<tr>
<th>Opis</th>
<th>Strona</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opróżnianie i czyszczenie filtra powietrza / regulatora</td>
<td>55</td>
</tr>
<tr>
<td>Regulacja ciśnienia powietrza</td>
<td>55</td>
</tr>
<tr>
<td>Wymiana filtra powietrza</td>
<td>55</td>
</tr>
<tr>
<td>Kalibracja ogniwa obciążnikowego</td>
<td>56</td>
</tr>
<tr>
<td>Weryfikacja działania czujnika temperatury i ciśnienia</td>
<td>59</td>
</tr>
<tr>
<td>Procedura czyszczenia</td>
<td>60</td>
</tr>
<tr>
<td>Opróżnianie zbiornika grzejącego</td>
<td>62</td>
</tr>
<tr>
<td>Opróżnianie komory próżniowej</td>
<td>63</td>
</tr>
<tr>
<td>Serwisowanie / demontaż komory próżniowej</td>
<td>65</td>
</tr>
<tr>
<td>Montaż komory próżniowej</td>
<td>66</td>
</tr>
<tr>
<td>Ustawienia wydruku</td>
<td>68</td>
</tr>
<tr>
<td>Interpretowanie rejestru zdarzeń</td>
<td>70</td>
</tr>
<tr>
<td>Alarmy — przyczyny i rozwiązania</td>
<td>75</td>
</tr>
<tr>
<td>Aktualizowanie firmware suszarki VBD</td>
<td>80</td>
</tr>
<tr>
<td>Teoria działania / wydajność</td>
<td>82</td>
</tr>
</tbody>
</table>

Dokumentacja techniczna

<table>
<thead>
<tr>
<th>Opis</th>
<th>Strona</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specyfikacja techniczna suszarki VBD-150</td>
<td>83</td>
</tr>
<tr>
<td>Schematy suszarki VBD-150</td>
<td>84</td>
</tr>
<tr>
<td>Lista zalecanych części zamiennych do suszarki VBD-150</td>
<td>94</td>
</tr>
<tr>
<td>Specyfikacja techniczna suszarki VBD-300</td>
<td>95</td>
</tr>
<tr>
<td>Schematy suszarki VBD-300</td>
<td>96</td>
</tr>
<tr>
<td>Lista zalecanych części zamiennych do suszarki VBD-300</td>
<td>104</td>
</tr>
</tbody>
</table>

Deklaracja zgodności

Wsparcie techniczne i dane kontaktowe | 106
Gwarancja — wyłączna 5 lat

Firma MAGUIRE PRODUCTS OFERUJE NAJBARDZIEJ KOMPLEKSOWĄ GWARANCJĘ w branży wyposażenia do przetwarzania tworzyw sztucznych. Gwarantujemy, że każda suszarka próżniowa MAGUIRE VBD wyprodukowana przez nas jest wolna od wad materiałowych i wykonawczych pod warunkiem zachowania normalnych warunków eksploatacyjnych i serwisowania urządzenia; gwarancja nie obejmuje tylko elementów wymienionych poniżej jako „elementy nieobjęte gwarancją”; nasze zobowiązania w ramach gwarancji ograniczono są do naprawy w naszej fabryce każdej suszarki, która w ciągu PIĘCIU (5) LAT od daty dostarczenia do pierwszego nabywcy, zostanie ZWRÓCONA w nienaruszonym stanie, z PRZEDPŁACONYMI opłatami transportowymi, i która na podstawie naszej oceny uznana zostanie za wadliwą; gwarancja ta zastępuje wszelkie inne gwarancje wyrażone i domniemane oraz wszelkie inne zobowiązania i odpowiedzialność z naszej strony; Firma MAGUIRE PRODUCTS nie przyjmuje ani nie upoważnia innych osób do przyjęcia w jej imieniu innej odpowiedzialności w związku ze sprzedażą szusarek.

Ta gwarancja nie obejmuje wyposażenia naprawianego lub modyfikowanego w miejscu innym niż fabryka MAGUIRE PRODUCTS INC., chyba że taka naprawa lub modyfikacja, w naszej ocenie, nie jest przyczyną usterki; gwarancja nie obejmuje również sprzętu użytego niezgodnie z przeznaczeniem, zaniedbanego lub uszkodzonego wskutek wypadku, nieprawidłowego podłączenia przewodów lub instalacji przez inne podmioty oraz używanej niezgodnie z instrukcjami dostarczonymi przez firmę Maguire Products, Inc.

Nasza odpowiedzialność wynikająca z tej gwarancji dotyczy tylko sprzętu zwróconego do naszej fabryki w Aston, Pennsylvania, z PRZEDPŁATĄ.

Dążymy do zapewnienia wsparcia naszym klientom, w najbardziej dogodny sposób w rozwiązywaniu problemów, które mogą pojawić się w powiązaniu ze sprzętem naszej produkcji.

PIERWSZE KROKI:
IDŹ DO: INFORMACJE DOT. BEZPIECZEŃSTWA
KOLEJNA STRONA
INFORMACJE DOT. BEZPIECZEŃSTWA

GORĄCE POWIERZCHNIE:

Podobnie jak w innych suszarkach, urządzenie posiada GORĄCE POWIERZCHNIE, których nie wolno dotykać. Mogą się one rozgrzać do temperatury 350°F, (180°C).

Zazwyczaj powierzchnie te nie rozgrzewają się do niebezpiecznie wysokiej temperatury, ale należy unikać dotykania wszelkich gorących powierzchni.

Znaczenie etykiety ostrzegawczej: GORĄCE POWIERZCHNIE

ZACHOWAĆ OSTROŻNOŚĆ w czasie zdejmowania i zakładania zbiorników.

STOSOWAĆ RĘKAWICE

NIE SIĘGAĆ do wnętrza obudowy suszarki.

RYZYKO PORAŻENIA PRĄDEM ELEKTRYCZNYM:

Odłączyć zasilanie przed rozpoczęciem czynności serwisowych na suszarce.

PIERWSZE KROKI: IDŹ DO: INSTALACJA — KOLEJNA STRONA
Instalacja

Transport i przygotowanie

Wysyłka

Suszarka VBD-150 dostarczana jest na dwóch paletach w 4 głównych częściach:

(A) Zbiornik grzejny

(B) Komora próżniowa

(C) Zbiornik odbiorczy

(D) Panel sterowania

Podnoszenie i przemieszczanie elementów suszarki

![WARNING]

Należy upewnić się, że sprzęt do podnoszenia ma odpowiedni udźwig umożliwiający podniesienie poszczególnych części suszarki VBD-150 lub VBD-300. Patrz dokumentacja techniczna na stronie 83, gdzie podano masę poszczególnych części suszarek VBD-150 i VBD-300.
Ogólny układ i wymiary

VBD-150
Suszarka VBD-150

Zawartość dostawy

Suszarka VBD-150 dostarczana jest na dwóch paletach. Na jednej palecie znajduje się główny korpus suszarki VBD-150 oraz dwa pudełka kartonowe z komorą próżniową, zbiornikiem odbiorczym i elementami mocującymi do montażu. Na drugiej palecie znajduje się zbiornik grzejny.

Elementy mocujące obejmują: 1 — obejma węża 2", dwa zespoły czujnika temperatury (czujnik rezystancyjny, przewód, wtyczka), 4 śruby z łbem półkolistym ½" x 13 x 1¼", 4 nakrętki blokujące ½", 8 podkładek zębatych ½".

Rozpakowywanie głównego korpusu suszarki VBD-150

Zdjąć dwa pudełka z komorą próżniową i zbiornikiem odbiorczym z palety.

Nie staczać suszarki VBD-150 na kółkach bezpośrednio z palety. Może uszkodzić VTA. Suszarkę VBD-150 można ostrożnie stoczyć z palety z wykorzystaniem ułożonych na sobie kawałków drewna 2x4. Co najmniej dwie osoby powinny asekurować suszarkę w czasie staczania z palety. Należy pamiętać, aby zapewnić wystarczającą ilość miejsca dla VTA.

Pod suszarką znajduje się VTA. Należy zapewnić odpowiedni odstęp od pochylni, aby nie uszkodzić VTA umieszczonego pod suszarką.

> WARNING
Zdjąć wszystkie elementy opakowania z głównego korpusu suszarki.

Przecinając opaskę zaciskową z tyłu na górze suszarki, należy przytrzymać tacę suszarki i powoli opuścić ją na ogniwo obciążnikowe. →

Instalacja zbiornika grzejącego

Zbiornik grzejący dostarczany jest na oddzielnej palecie. Zbiornik grzejący waży 115 funtów (52 kg).

Przymocowany jest do palety czterema śrubami.

Przytrzymując zbiornik grzejący należy wykręcić te cztery śruby.

Rozszerzenie zbiornika grzejącego — OPCJONALNE

Rozszerzenie zbiornika grzejącego służy do wydłużenia czasu przebywania lub przetwarzania większych ilości materiału.

Jeżeli suszarka VBD wyposażona będzie w rozszerzenie zbiornika grzejącego, to należy je zainstalować przed montażem zbiornika grzejącego na suszarce VBD.

Jeżeli nie zamówiono rozszerzenia zbiornika grzejącego, należy przejść do kolejnego rozdziału **Montowanie zbiornika grzejącego**.

Zdjąć płytę podajnika / dyfuzor znajdujące się na górze zbiornika grzejącego poprzez wykręcenie trzech śrub z łbem półokrągłym 1/4-20 i zdjęcie elementów dystansowych. Podnieść płytę podajnika / dyfuzor ze zbiornika grzejącego.
Zdjąć trzy czarne plastikowe zaślepki na górnej płycie zbiornika grzejącego. Patrz zdjęcia.

Zamontować płytkę podajnika / dyfuzor na rozszerzeniu zbiornika grzejącego. Rozszerzenie zbiornika grzejącego może być skierowane w górę dowolnym końcem, są one identyczne.

Zamontować rozszerzenie na górze zbiornika grzejącego, ustawiając w linii otwory na śruby w kołnierzu. Wystające śruby na spodzie rozszerzenia zbiornika grzejącego wchodzą w otwory na górze zbiornika grzejącego.

Zamocować rozszerzenie zbiornika grzejącego do kołnierza zbiornika grzejącego za pomocą dostarczonych śrub z łbem półokrągłym 1/4-20 i nakrętek Nyloc.

Przymocować kabel czujnika temperatury do czujnika temperatury na płycie podajnika / dyfuzorze.

Montowanie zbiornika grzejącego

Zbiornik grzejny można podnieść za pomocą wózka widłowego na główny korpus suszarki VBD-150. Punkty zaczepienia znajdują się na dole na dolnym czarnym pierścieniu stalowym przedstawionym na zdjęciu po prawej stronie.

Zamontować zbiornik grzejący w taki sposób, aby jego drzwiczki skierowane były do przodu suszarki, po tej samej stronie co panel sterowania.

Opuścić zbiornik grzejny na suszarkę VBD-150. Ustawić otwory na śruby w zbiorniku grzejnym równo z otworami na śruby na suszarce VBD-150. Po opuszczeniu zbiornik można ostrożnie przestawić, aby równo ustawić otwory na śruby.
Wkręcić cztery śruby ½"-13 w następujący sposób:

Pod łbem każdej śruby ½"-13 należy umieścić podkładkę zabezpieczającą ¼".
Montaż zbiornika grzejącego suszarki VBD-150 — rura zsypowa

1. Odkręcić 2 znajdujące się na dole zbiornika grzejącego nakrętki motylkowe mocujące lej zaworu napełniającego komory próżniowej.

2. Wyjąć lej zaworu napełniającego komory próżniowej.

4. Włożyć rurę zsypową w duży otwór na dole ramy leja.

5. Zainstalowana rura zsypowa.

Montaż połączeń

Zamocować przewody sprężonego powietrza zaworu zasuwowego zbiornika grzejcego.

Dwa przewody sprężonego powietrza łączące siłownik pneumatyczny zbiornika grzejcego z suszarką VBD-150 mają różne średnice, aby uniknąć nieprawidłowego połączenia.

Mocowanie węża zbiornika grzejcego

Za pomocą obejmy 2" przyłączyć czerwony wąż grzewczy do zbiornika grzejcego.

Podłączenie wtyczek czujnika temperatury

Wtyczki czujnika temperatury mają różne rozmiary i można je podłączyć tylko do prawidłowego gniazda.

Montaż zbiornika odbiorczego

Wyjąć zbiornik odbiorczy z pudełka. Zbiornik odbiorczy można rozpoznać po czerwonych uchwytach na górze (komora próżniowa ma czerwony uchwyty po bokach na górze).

Zamknąć przesuwnicę, aby umożliwić postawienie zbiornika odbiorczego na podstawie suszarki VBD-150. Po ustawieniu otworzyć przesuwnicę, aby umożliwić przepływ materiału.

Zamontować zbiornik odbiorczy w taki sposób, aby jego ręczna przesuwnica znajdowała się w przednim prawym rogu suszarki.
W podstawie zbiornika odbiorczego znajdują się dwa rowki, które trzeba ustawić równo ze śrubami ustalającymi.

Po ustawieniu śrub ustalających należy wsunąć przesuwnicę, aby zamocować zbiornik odbiorczy oraz otworzyć podstawę, aby umożliwić przepływ materiału.

Montaż komory próżniowej

Wyjąć komorę próżniową z pudełka.

Podnieść blokadę suwaka po prawej stronie szafy suszarki VBD-150.

Blokady suwaka w położeniu otwartym

Przytrzymując blokadę suwaka w górę, wyciągnąć suwak komory próżniowej. Gdy suwak zostanie wyciągnięty na całą długość, puścić blokadę suwaka, która powinna zablokować się za płytą mocującą z tyłu wysuniętego suwaka, blokując suwak w położeniu całkowicie wysuniętym (patrz zdjęcia poniżej).

Oprzeć komorę próżniową na całkowicie wysuniętych suwakach.

Komora próżniowa posiada trzy kołki wsporczce. Ustawić komorę tak, aby strona z dwoma kołkami wsporczymi znajdowała się na lewej prowadnicy suwaka.

Komora próżniowa suszarki VBD-300 musi być podnoszona przez dwie osoby.
Zamknięcie suwaka

Przytrzymując blokadę suwaka w górze, wepchnąć suwak komory próżniowej do środka, aż przejdzie za płytę mocującą. Puścić blokadę suwaka i kontnuować wsuwanie suwaka komory próżniowej do środka.

Wepchnąć prowadnice suwaka i komorę próżniową do wnętrza suszarki, aż blokada suwaka opadnie na swoje miejsce przed suwakiem komory próżniowej, blokując suwak komory próżniowej w położeniu roboczym.

Podłączyć przewody sprężonego powietrza. Obrócić całkowicie pierścień blokujący w prawo, aby zamocować przewód sprężonego powietrza.

Podnieść kołnierz uszczelniający zbiornika odbiorczego, aż jego magnesy zostaną przyciągnięte do spodniej części komory próżniowej.

Przechowywanie zsuwni zsypowej zbiornika grzejącego

Zsuwnię zsypową zbiornika grzejącego należy przechowywać po prawej stronie suszarki, zawieszoną na czarnej ramie. Patrz zdjęcie.
Połączenia zewnętrzne suszarki

Po zmontowaniu należy podłączyć: przewody sprężonego powietrza, elektryczne oraz linie zasilającą i odbierającą materiał.

Przyłącze sprężonego powietrza

Połączyć przewód sprężonego powietrza z gniazdem IN regulatora powietrza za pomocą żeńskiego łącznika rurowego 1/4" NPT.

Prawidłowe działanie suszarki wymaga doprowadzenia powietrza pod ciśnieniem roboczym 80 psi (5,5 bara), gdy pracuje generator podciśnienia. Ustawienie ciśnienia powietrza na wartość 85 psi, przy niepracującym urządzeniu, zazwyczaj umożliwia osiągnięcie ciśnienia 80 psi wymaganego w czasie pracy generatora podciśnienia.

Jeżeli doprowadzone powietrze zanieczyszczone jest olejem, należy zastosować oddzielacz oleju (filtr koalescencyjny). Olej w doprowadzonym powietrzu w połączeniu z pyłem z komory próżniowej tworzy maź wewnątrz generatora podciśnienia. Generator przestanie działać i konieczne będzie jego wyczyszczenie.

Należy sprawdzać wskazania manometru, aby upewnić się, że ciśnienie utrzymuje się na poziomie 80 psi (5,5 bar) w czasie pracy generatora podciśnienia podczas sprawdzania i nastawiania regulatora. Jeżeli ciśnienie spadnie poniżej 80 psi, należy zmienić nastawę regulatora. Jeżeli w czasie pracy generatora podciśnienia nie można utrzymać ciśnienia na poziomie 80 psi (5,5 bar), to znaczy, że zasilanie sprężonym powietrzem jest za słabe.

Nie wolno podłączać suszarki do źródła zaolejonego powietrza. Może to skutkować uszkodzeniem suszarki. Należy stosować tylko źródło powietrza czyste, suche i wolne od oleju.

Ryzyko przycięcia — nie zbliżać dloni do płaszczyzny uszczelnienia, powierzchni styku powyżej uszczelnienia komory próżniowej.

Po włączeniu sprężonego powietrza, gdy przełącznik podnoszenia komory ciśnieniowej
zostanie przestawiony w górę, siłowniki podnoszą komorę próżniową z prowadnic suwaków i do płaszczyzny uszczelnienia, eliminując odstęp między górną częścią komory próżniowej a płaszczyzną uszczelnienia.

NIE ZBLIŻAĆ PALCÓW
Połączenia elektryczne

RYZYKO OBRAŻEŃ CIAŁA! Przyłącza elektryczne wykonywać mogą tylko wykwalifikowani elektrycy.

Podłączanie zasilania głównego

Kabel elektryczny po lewej stronie suszarki na zasilaczu doprowadza zasilanie do suszarki. Kabel ten ma cztery żyły. Trzy z tych żył są czarne i oznaczone numerami: 1, 2 i 3. Czwarta zielono-żółta żyła to przewód uziemienia.

Zasilanie należy podłączyć do rozłącznika wyposażonego w odpowiedni bezpiecznik.

<table>
<thead>
<tr>
<th>A</th>
<th>Napięcie</th>
<th>VBD-150</th>
<th>VBD-300</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>240</td>
<td>35</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>480</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>575</td>
<td>20</td>
<td>25</td>
</tr>
</tbody>
</table>

Patrz schemat połączeń wysokiego napięcia rozpoczynający się
od strony 86.
Potwierdzenie prawidłowego podłączenia 3-faz

Urządzenie TRZYFAZOWE — POTWIERDZIĆ prawidłowe podłączenie 3-faz sieci elektrycznej przed załadowaniem materiału. Niepotwierdzenie prawidłowego podłączenia 3-faz może skutkować obrotem dmuchawy w przeciwnym kierunku i jej uszkodzeniem w przypadku zassania materiału ze zbiornika grzejnego zamiast nadmuchania do niego ogrzanego powietrza.

Aby potwierdzić prawidłowe podłączenie 3-faz, należy wykonać następujące czynności:

Włączyć zasilanie wyłącznikiem głównym.

Prawidłowe podłączenie 3-faz można potwierdzić na dwa sposoby:

Nieprawidłowe podłączenie 3-faz skutkuje obrotem dmuchawy w przeciwnym kierunku. Obie metody sprawdzania prawidłowego podłączenia 3-faz wymagają sprawdzenia kierunku obrotu dmuchawy.

Metoda pierwsza polega na odlączeniu 2” węża ogrzanego powietrza od zbiornika grzejnego i ręcznym włączeniu dmuchawy. Dmuchawa powinna wydmuchiwać powietrze przez wąż 2”. Wąż nie powinien zasysać powietrza. Jeżeli powietrze nie jest wydmuchiwane, tylko zasysane, to 3-fazy NIE są podłączone prawidłowo.

Metoda druga polega na zdjęciu lewej ścianki w celu odkrycia dmuchawy i sprawdzeniu kierunku obrotu po włączeniu. Dmuchawa musi obracać się w prawo, w kierunku wskazany przez czerwoną strzałkę.

1. Na ekranie głównym nacisnąć przycisk , aby podświetlić opcję „Praca ręczna”. Nacisnąć ENTER.

2. Nacisnąć przycisk , aby wybrać pozycję „Obsługa wyjść”. Nacisnąć ENTER.

Ogólne informacje o suszarce

T2 — temperatura na wylocie zbiornika grzejającego

T1 — temperatura na wlocie zbiornika grzejającego

- **T1s** — nastawa temperatury powietrza na wlocie zbiornika grzejającego
- **T1a** — rzeczywista temperatura powietrza na wlocie zbiornika grzejającego

T4 — temperatura na wylocie materiału (opcjonalna)
Omówienie panelu sterowania

Ekrany — panel sterowania suszarki VBD ma dwa ekrany. Górny, czerwony ekran wskazuje temperaturę rzeczywistą lub wydajność. Dolny, niebieski ekran wskazuje różne dane trybu produkcyjnego lub informacje konfiguracyjne.

Zasilanie panelu sterowania
Włącza panel sterowania (zasilanie główne musi być włączone.) Służy również do wychodzenia lub anulowania opcji menu i powracania do ekranu wyższego poziomu.

Menu najwyższego poziomu:
• „Start suszarki” — patrz strona 27
• „Uruch. suszarki (wkl.)” — patrz strona 52
• „Czyszczenie” — patrz strona 63
• „Praca ręczna” — patrz strona 34

Enter pozwala wejść do podświetlonej opcji menu.

Przełącznik Select przełącza między 4 różnymi zestawami ekranów:

Przyciski strzałek — poruszanie się po menu, wykonywanie zmian. Przycisk ▼ służy również do wyciszania alarmów.

Przejście do pozycji „COFNIJ” i naciśnięcie przycisku ENTER powoduje wyjście z aktualnego menu do menu wyższego poziomu.

Ekran stanu
Na ekranie stanu wyświetlane są:

T1a — rzeczywista temperatura powietrza na wlocie zbiornika grzejącego
T1a — nastawa temperatury powietrza na wlocie zbiornika grzejącego
Vta — rzeczywisty czas podciśnienia
VTs — nastawa czasu podciśnienia
ZAAWANSOWANE — dostęp do trybu zaawansowanego

Centrum druku
Do drukowania wykazu parametrów, rejestrów zdarzeń, rejestrów alarmów wszystkich tych pozycji do pliku na pamięci USB Flash.

Patrz również strona 68, gdzie wyjaśniono konfigurację drukowania.
Tryb konfiguracji
Dostęp do zaawansowanych informacji o konfiguracji.
Patrz strona 36

Rejestr alarmów
Wyświetla zawartość bufora 50 ostatnich wpisów alarmowych. Uwaga:
Wydruk rejestru alarmów zawiera historię alarmów od ostatniego wyczyszczenia rejestru alarmów.
Uruchomienie i obsługa

ważne: Należy sprawdzić suszarkę VBD i potwierdzić, że w zbiorniku grzejącym, komorze próżniowej i zbiorniku odbiorczym nie ma materiału. Aby ułatwić opróżnianie, należy użyć funkcji czyszczenia dostępnej na ekranie głównym.

Instrukcje uruchomienia i obsługi

1. **Sprawdzić, czy drzwiczki są zamknięte.** Górnym zbiornik grzejący posiada drzwiczki. Należy sprawdzić, czy wszystkie 3 zatrzaski są zamknięte. Należy również sprawdzić, czy dolny zbiornik odbiorczy jest na swoim miejscu.

2. **Umieścić materiał w górnym zbiorniku grzejącym.** Począć na napełnienie zbiornika grzejącego przed uruchomieniem suszarki.

3. **Włączyć zasilanie główne** poprzez obrócenie pokrętła głównego rozłącznika 25 A w położenie ON. Spowoduje to włączenie suszarki VBD-150.

Po pierwszym włączeniu suszarki VBD panel sterowania włączy się automatycznie. Jeżeli zasilanie główne jest włączone, ale panel sterowania jest wyłączony, należy nacisnąć i przytrzymać przez 2 sekundy czerwony przycisk zasilania na panelu sterowania. (Uwaga: Panel sterowania suszarki VBD można wyłączyć bez konieczności wyłączania zasilania głównego poprzez naciśnięcie i przytrzymanie przez 4 sekundy czerwonego przycisku zasilania).

4. Po umieszczeniu materiału w zbiorniku grzejącym należy wybrać opcję „Start suszarki” i nacisnąć przycisk ENTER.
5. Na wyświetlaczu pojawi się ekran przygotowania do uruchomienia. Na tym ekranie:

„Tem.dział.” — to temperatura na wlocie zbiornika grzejącego. Pod koniec cyklu nagrzewania wstępnego cały materiał w zbiorniku grzejący osiągnie tę temperaturę. Domyślnie nastawa wynosi 150°F. Należy posłużyć się informacjami w sekcji „Zalecane temperatury nagrzewania” na stronie 27 lub skontaktować się z producentem materiału.

„Wstęp.nagrz.” — jest to czas nagrzewania od chwili uruchomienia zimnego urządzenia.

Domyślnie wybrana jest pozycja „START” (lokalizacja kursora). Jeżeli odpowiednie ustawienia zostały wprowadzone wcześniej, wystarczy naciąć przycisk ENTER jeden raz, aby uruchomić urządzenie. W przeciwnym razie należy za pomocą przycisków strzałek przesuwać kursor za pomocą przycisków strzałek do odpowiedniego ustawienia i naciąć przycisk ENTER. Na wyświetlaczu podświetli się wartość z możliwością regulacji.

Za pomocą przycisków strzałek można zmienić nastawę. Naciąć przycisk ENTER, aby przejść do kolejnych wartości i zakończyć regulacje ustawienia.

6. Gdy wyświetlacz zakończy tryb edycji (podświetlone pozycje), należy naciąć przycisk „”, aby wybrać pozycję „START”. Po wybraniu pozycji „START” należy naciąć przycisk ENTER, aby uruchomić suszarkę.

7. Na wyświetlaczu pojawi się informacja, że suszarka pracuje w trybie „WSTĘP. GRZANIE”, oraz następujące informacje:

T1a — rzeczywista temperatura powietrza na wlocie zbiornika grzejącego
T1s — nastawa temperatury powietrza na wlocie zbiornika grzejącego
VTa — rzeczywisty czas podciśnienia.
VTs — nastawa czasu podciśnienia.
PROZNIA — rzeczywiste ciśnienie w komorze próżniowej.
Działanie suszarki:

W czasie nagrzewania wstępnego, materiał w zbiorniku grzejącym jest rozgrzewany do temperatury (T_{1s}). Czas nagrzewania wstępnego zależy od nastawy czasu wstępnego nagrzewania na ekranie przygotowania do uruchomienia (nagrzewanie wstępine przez pewien czas, domyślnie 35 minut) lub od opcji Auto w konfiguracji nagrzewania wstępnego, która ustawia różnicę temperatur na wlocie i wylocie oraz minimalny czas nagrzewania wstępnego.

Po nagrzewaniu wstępnym około jedna trzecia materiału w zbiorniku grzejącym jest zsypywana do komory próżniowej i rozpoczyna się pierwszy cykl suszenia próżniowego. Każdy cykl suszenia próżniowego ma minimalny czas podciśnienia, ustawiany na ekranie przygotowania do uruchomienia lub na głównym ekranie pracy (VTs). (domyślny czas to 20 minut).

Podajnik ładuje nowy materiał do zbiornika grzejącego, gdy do komory próżniowej zsypywany jest nagrzany materiał i cykl nagrzewania przebiega równolegle do cyklu suszenia próżniowego (czas pierwszego cyklu suszenia próżniowego trwa przez ustawiony czas). Nowa partia materiału w górnej części zbiornika grzejącego rozgrzewa się szybciej. Minimalny czas nagrzewania zależy od czasu cyklu suszenia próżniowego.

Po pierwszym cyklu suszenia próżniowego materiał jest umieszczany w zbiorniku odbiorczym i jest gotowy do użycia. Materiał w zbiorniku odbiorczym jest osłonięty suchym powietrzem.

Szybkość pobierania materiału ze zbiornika odbiorczego w ostatecznym rozrachunku decyduje o tym, ile czasu materiał jest nagrzewany i ile czasu przebywa w komorze próżniowej. **Przykłady:** Jeżeli pobranie całego materiału ze zbiornika odbiorczego trwa 25 minut, to cykl suszenia próżniowego będzie trwał 25 minut, czyli dłużej niż 20 minutowa nastawa (na ekranie przygotowania do uruchomienia). Jest to normalne działanie urządzenia. Jednak jeżeli zbiornik odbiorczy zostanie opróżniony w 15 minut, a czas przebywania w komorze próżniowej ustawiony jest na 20 minut, to powstanie 5 minutowa przerwa, w czasie której materiał nie będzie dostępny. Oznacza to, że wydajność produkcyjna suszarki została przekroczona. Jeżeli aktywowany jest alarm wydajności („Ustawienia alarmów”), zgłoszony zostanie alarm wydajności (kod alarmu 20).

„Pause” [Wstrzymaj], „Wylaczenie”, „Automatyczne wylaczenie”, „Nagle zamkniecie”

Naciśnięcie czerwonego przycisku w dowolnym momencie cyklu nagrzewania wstępnego lub normalnej pracy (praca po zakończeniu cyklu nagrzewania wstępnego) spowoduje wyświetlenie ekranu z następującymi opcjami wyłączenia:
„Pause” [Wstrzymaj] — wstrzymuje licznik czasu komory próżniowej. Aby wznowić pracę po wstrzymaniu, należy wybrać opcję „Resume” [Wznów].

„Chlodz.” (WL./WYL.) — po wybraniu tej opcji suszarka będzie obniżać temperaturę materiału w zbiorniku grzejącym do podanej temperatury („Temp. studzenia”) przez określony czas („Czas studzenia”).

Temperaturę i czas studzenia można zmienić za pomocą przycisków strzałek ▲ ▼. Za pomocą przycisku ENTER można przechodzić między wartościami i zakończyć regulację ustawienia.

Nacisnąć przycisk ▼, aby przewinąć kursor do opcji „Wylaczenie”, aby kontynuować wyłączenie. Nacisnąć przycisk ENTER, aby rozpocząć wyłączenie.

Naciśnięcie czerwonego przycisku w czasie planowanego wyłączenia spowoduje wyświetlenie ekranu „Nagle zamknięcie”, na którym można rozpocząć niezwłoczne zamknięcie suszarki.

„Automatyczne wyłączenie” — rozpoczyna procedurę wyłączenia (patrz powyżej) podanego dnia i o podanej godzinie. Dodatkowe informacje na temat ustawiania daty i godziny wyłączenia automatycznego znaleźć można na stronie 32.

„Nagle zamknięcie” — szybkie, ale kontrolowane wyłączenie nagrzewnicy, dmuchawy i układu podciśnienia oraz przedmuchania instalacji.

„Anuluj” — wyjście z ekranu wyłączenia bez wykonywania żadnej czynności.

„Pomin wstęp grzn.” (wyświetlane tylko w czasie nagrzewania wstępnego) — Pomija nagrzewanie wstępne umożliwiające przekazanie materiału od razu do komory próżniowej (przykład: materiał został już nagrany, a suszarka została wyłączona i po chwili ponownie włączona).
Automat. wylaczenie

Naciśnięcie czerwonego przycisku w dowolnym momencie cyklu nagrzewania wstępnego lub normalnej pracy (praca po zakończeniu cyklu nagrzewania wstępnego) spowoduje wyświetlenie ekranu z opcjami wyłączenia.

<table>
<thead>
<tr>
<th>Nacisnąć:</th>
<th>aby wyświetlić ekran wyłączenia. Za pomocą przycisku ◄ przejść do pozycji „Automatyczne wyłączenie”.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na ekranie pojawi się:</td>
<td>Na ekranie pojawi się bieżąca data i godzina, a pod nią data i godzina automatycznego wyłączenia. Zmieniana jest data i godzina automatycznego wyłączenia. Za pomocą przycisków ◄ ► należy przejść do dolnego pola i zmienić datę i godzinę, kiedy nastąpi ma automatyczne wyłączenie.</td>
</tr>
<tr>
<td>Na ekranie pojawi się:</td>
<td>Za pomocą przycisków ◄ ► należy ustawić wartość i nacisnąć przycisk ENTER, aby zapisać zmienione ustawienia i przejść do kolejnego pola. Po zakończeniu (na ekranie pojawi się komunikat „NASTĘPNY”, wskazujący zakończenie edycji wszystkich pól) należy nacisnąć przycisk ENTER. Na górze ekranu głównego wyświetlony teraz będzie komunikat „AUTOMATYCZNE WYLACZENIE”, oznaczający, że suszarka pracuje w trybie automatycznego wyłączenia.</td>
</tr>
</tbody>
</table>

Tryb zaawansowany (ADV)

„Masa napełnienia” — pożądana masa materiału do umieszczenia w komorze próżniowej.

„Gęstość produktu” — gęstość materiału wyrażona albo w funtach na stopę sześcienną, albo kilogramach na litr (zależnie od wybranej jednostki miary w menu „Ust. wagi”).

„Vac Cham.” [Komora próżniowa] — masa materiału znajdującego się aktualnie w komorze próżniowej.

„Wydajność” — obliczona wydajność produkcyjna w jednostce masy na godzinę.

„Licznik” — obliczona wartość sumaryczna wszystkich cykli od czasu naciśnięcia przycisku Start.

„Ostat. cykl”* — łączny czas przetwarzania całej partii suchego materiału.

„Liczba cykli”* — sumaryczna liczba cykli od czasu naciśnięcia przycisku Start.

„Czas napełnienia”* — łączny czas potrzebny na napełnienie komory próżniowej.

„Czas opróżniania”* — łączny czas potrzebny na opróżnienie komory próżniowej.

T1 — wskazuje rzeczywistą temperaturę na wlocie zbiornika grzejącego oraz wartość procentową nagrzewania.

T2 — wskazuje rzeczywistą temperaturę na wylocie zbiornika grzejącego.

T4 — wskazuje rzeczywistą temperaturę w zbiorniku odbiorczym.

* Te zaawansowane opcje menu można włączyć/wyłączyć w menu „UST. WYSWIETLACZA”.

I/O: BHVC
►Cofnij
Masa napełnienia:
35LB
Vac. Cham.:+ 35LB
Zb. Odbioru:
27LB▼

I/O: BHVC
►Cofnij
Wydajność:
75LB/HR▲
Licznik:
778LB
Ostat. cykl:
21:06▼

I/O: BHVC
►Cofnij
Liczba cykli:
5▲
Czas napełnienia:
18,697
T1: 149/150°F H: 19% ▼

I/O: BHVC
►Cofnij
T1: 149/150°F H: 19% ▲
T2: 106°F T4: 145°F
Zalecane temperatury suszenia

<table>
<thead>
<tr>
<th>MATERIAŁ</th>
<th>WILGOTNOŚĆ DOCELOWA % *</th>
<th>TEMPERATURA SUSZENIA** °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>0,10</td>
<td>80 – 85</td>
</tr>
<tr>
<td>ABS/PC</td>
<td>0,02</td>
<td>100</td>
</tr>
<tr>
<td>LCP</td>
<td>0,02</td>
<td>150</td>
</tr>
<tr>
<td>PA</td>
<td>0,20 – 0,10</td>
<td>80 – 85</td>
</tr>
<tr>
<td>PBT</td>
<td>0,02</td>
<td>120</td>
</tr>
<tr>
<td>PC</td>
<td>0,02</td>
<td>125</td>
</tr>
<tr>
<td>PC/PBT</td>
<td>0,02</td>
<td>125</td>
</tr>
<tr>
<td>PEEK</td>
<td>0,20 – 0,10</td>
<td>150</td>
</tr>
<tr>
<td>PEI</td>
<td>0,02</td>
<td>150</td>
</tr>
<tr>
<td>PES</td>
<td>0,05 – 0,02</td>
<td>150</td>
</tr>
<tr>
<td>PET (jakość do formowania)</td>
<td>0,010</td>
<td>150-180</td>
</tr>
<tr>
<td>PET (tabletki, wytłaczanie)</td>
<td>0,005</td>
<td>150-180</td>
</tr>
<tr>
<td>PMMA (akryl)</td>
<td>0,02 – 0,04</td>
<td>79</td>
</tr>
<tr>
<td>POM (acetal)</td>
<td>0,20 – 0,10</td>
<td>80 – 110</td>
</tr>
<tr>
<td>PPO</td>
<td>0,02</td>
<td>100 – 120</td>
</tr>
<tr>
<td>PPS</td>
<td>0,02</td>
<td>150</td>
</tr>
<tr>
<td>PUR</td>
<td>0,02</td>
<td>125 – 140</td>
</tr>
<tr>
<td>PSU</td>
<td>0,02</td>
<td>150</td>
</tr>
<tr>
<td>SAN</td>
<td>0,20 – 0,10</td>
<td>80</td>
</tr>
</tbody>
</table>

* Wilgotność docelowa zgodnie z zaleceniem producenta surowca.

* Temperatura suszenia zgodnie z zaleceniem producenta surowca.

Suszenie następuje, gdy cały materiał osiągnie odpowiednią temperaturę i zostanie następnie umieszczony w warunkach podciśnienia o odpowiedniej wartości przez odpowiednio długi czas.

Pomiar wilgotności materiału przed i po procesie suszenia realizowany jest z wykorzystaniem analizatora wilgoci.
Opis opcji w menu

Tryb wyboru (Menu najwyższego poziomu)
Trzy tryby pracy: „Start suszarki”, „Czyszczenie” i „Praca ręczna”.

„Start suszarki” — patrz rozdział pt. „Obsługa” na stronie 27.

„Czyszczenie” — funkcja ta powoduje otworzenie wszystkich zaworów i umożliwia odprowadzenie materiału i opróżnienie urządzenia.

„Opr. zb. podciśn.” — otwiera zawór spustowy komory próżniowej, opróżniając komorę próżniową

Oproznij wszystko — otwiera zawór napełniający komory próżniowej i zawór spustowy komory próżniowej

„Praca ręczna” — opcje umożliwiające bezpośrednie sterowanie konkretnymi wyjściami.

„Obsługa wyjść”

„Alarm dźwiękowy” — WYŁ./WŁ. — uruchamia alarm dźwiękowy.

„Syrena alarmowa” — WYŁ./WŁ. — aktywuje lampę ostrzegawczą.

„Suchy przedmuch” — ZAMKNIĘTY/OTWARTY zawór zasilający suchego powietrza do przedmuchu

„Gorna zas.poc.” — OTWARTA/ZAMKNIĘTA — zasuwa materiał nad komorą próżniową.

„Dolna zas.podc.” — OTWARTA/ZAMKNIĘTA — widoczna zasuwa w kształcie dysku poniżej komory próżniowej.

„Test grzałki” — uruchamia grzałkę i dmuchawę dostarczające ciepło do zbiornika grzejającego.

T1s: Nastawa temperatury na wlocie zbiornika grzejającego.

T1a: Rzeczywista temperatura na wlocie zbiornika grzejającego.

Start: Uruchamia test grzałki. W czasie testu dmuchawa będzie pracować.

„Moc grzałki:” Cykl roboczy grzałki wyrażony w procentach

„Dmuch.:” Status dmuchawy

„Edycja ustawien:” Łatwy dostęp do parametrów sterowania grzałki

„Test dmuchawy” — aktywuje dmuchawkę.
„Dmuch.:” Przełączanie między WYL./WL. za pomocą przycisku ENTER.
„Pom.:” Przełączanie między WYL./WL. za pomocą przycisku ENTER.
„Zabezp.:” Przełączanie między WYL./WL. za pomocą przycisku ENTER.
T1s: Nastawa temperatury na wlocie zbiornika grzejącego.
T1a: Rzeczywista temperatura na wlocie zbiornika grzejącego.

„Test podcissnienia” — testuje układ podciśnienia.
„Proznia:” Odczyt ciśnienia w komorze próżniowej
„Start Testu:” Rozpoczyna test układu podciśnienia. Uruchamia układ generatora podciśnienia.
„Czas usuniecia:” Czas w minutach/sekundach potrzebny na uzyskanie nastawy podciśnienia w czasie bieżącego testu.
„Cykl:” Ilość czasu w minutach/sekundach między kolejnymi uruchomieniami generatora podciśnienia w czasie utrzymywania podciśnienia. Służy do ustalania szczelności komory próżniowej.
„Nastawa ciśnienia:” Ciśnienie bezwzględne, z którym zrównane zostanie ciśnienie w komorze. Patrz parametr VPL.
„Delta ciśnienia:” Wartość ciśnienia przekraczająca wartość parametru VPL, przy której generator podciśnienia włączy się ponownie. Patrz parametr VPD.
„Czyszczenie zbiornika:” WYL./CYK/WL.

„Status wejść” — przedstawia status różnych wejść.
„Dmuchawa” — WYL./WL.
„Poziom” — poziom w zbiorniku grzewczym (0-100%)
„Cisnienie” — NISKO/OK
„PROZNIA” — ciśnienie bezwzględne w komorze próżniowej (mmHg)
„Podst. OT” — główny przełącznik temperatury grzałki — OK/OVERTMP
„Czyszcz. OT” — przełącznik temperatury grzałki czyszczenia — OK/OVERTMP
„Zb.grzlik.zdln.oprz” — zdalne opróżnianie zbiornika grzewczego — WL./WYL.
„VC LC” — odczyty nieprzetworzone z ogniwa obciążnikowego komory próżniowej
„RH LC” — odczyty nieprzetworzone z ogniwa obciążnikowego zbiornika odbiorczego
T1 — temperatura na wlocie zbiornika grzejącego
T2 — temperatura na wylocie zbiornika grzejącego
T4 — temperatura materiału na wylocie (opcjonalny czujnik temperatury)

„Timed Dispense” — otwiera zawory na czas wybrany przez użytkownika w milisekundach.
„Nap.:” Czas napełniania komory próżniowej w milisekundach.
„Opr.:” Czas opróżniania komory próżniowej w milisekundach.
Menu konfiguracji

Do menu konfiguracji można wejść poprzez naciśnięcie przycisku „Select” i wybranie trybu „kół zębatych”.

<table>
<thead>
<tr>
<th>Nacisnąć:</th>
<th>aby zmieniać tryb na ikonę kół zębatych.</th>
<th>Na ekranie pojawić się:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SETUP PODAJ HASŁO</td>
</tr>
<tr>
<td>Enter:</td>
<td>5-cyfrowe hasło. (Domyślne hasło to 22222). Za pomocą przycisków w w można zmienić nastawę. Nacisnąć ENTER, aby przejść do następnej nastawy i zakończyć.</td>
<td>Na ekranie pojawić się:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SETUP ► Ustawienia alarmow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>„Ust.Aut.zalaczania”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>„Ust. Dmuchawy”</td>
</tr>
</tbody>
</table>

Nacisnąć: przycisk w kilka razy, aby przejść do wybranej opcji. Nacisnąć ENTER, aby wybrać opcję konfiguracji do zmiany.

Opcje menu konfiguracji

„Ustawienia alarmow”

„Alarm braku materiału” (oznaczony „Material”)

„UWAGA:”
Gdy zabraknie materiału, urządzenie aktywuje alarm dźwiękowy i światło ostrzegawcze, ale nadal będzie sprawdzać obecność materiału.

„ZAMYKA:”
Gdy zabraknie materiału, urządzenie aktywuje alarm dźwiękowy i światło ostrzegawcze, ale nadal automatycznie rozpoczęte planowane wyłączenie. Alarm dźwiękowy trwa 15 sekund, a światło miga do czasu całkowitego wyłączenia suszarki.

„WYL:”
Wyłącza alarm braku materiału.

Gdy alarm braku materiału ustawiony jest na ostrzeganie lub wyłączenie, to ponowne próbę napełnienia są WŁĄCZONE. Po wybraniu opcji „WYL.” ponowne próby napełnienia są wyłączone.

„Alarm material got.” — jeżeli alarm gotowego materiału jest aktywowany, to zostanie on zgłoszony, gdy pierwsza i tylko pierwsza partia materiału zostanie poddana pełnemu cyklowi próżniowemu. Po 15 sekundach alarm dźwiękowy wyłączy się automatycznie. Pierwsza partia materiału utrzymywana będzie w warunkach podciśnienia do czasu wyłączenia tego alarmu. Alarm ten ma dwa przeznaczenia:

1. Informowanie operatora, że suchy materiał jest gotowy do przetworzenia.
2. Jako mechanizm wstrzymania, o ile jest potrzebny, dzięki któremu operator zyskuje czas na przygotowanie procesu.

„1st:”
Alarm gotowego materiału uruchamiany jest, gdy pierwsza i tylko pierwsza partia materiału gotowa jest do wyjęcia z komory próżniowej.
„WL.:” Alarm gotowego materiału uruchamiany, gdy każda partia materiału gotowa jest do zsypania z komory próżniowej. Tryb ten może być przydatny w warunkach laboratoryjnych.

„WYL.:” Wyłącza alarm gotowego materiału.

„Alarm temp. materiału” — gdy alarm temperatury materiału jest aktywowany, to zgłoszony zostanie zawsze, gdy zbiornik grzejący otrzyma polecenie dozowania materiału do komory próżniowej i temperatura T2 (wylot zbiornika grzejącego) będzie poniżej wartości ustalonej w parametrze ESM. Celem tego alarmu jest poinformowanie operatora, że materiał nie jest wystarczająco nagrany, najprawdopodobniej wskutek przekroczenia wydajności suszarki VBD.

„WL.:” Gdy alarm temperatury materiału jest aktywowany.

„WYL.:” Wyłącza alarm temperatury materiału.

„Alarm czasu przebywania” (oznaczony „Czas przebywania”) — gdy alarm czasu przebywania jest aktywowany, to zostanie on zgłoszony, gdy suszony materiał przetrzymywany jest w zbiorniku odbiorczym przez zbyt długi czas. Od parametru RAL zależy, kiedy alarm czasu przebywania zostanie włączony na podstawie czasu oraz masy materiału pozostającego w zbiorniku odbiorczym. Więcej informacji, patrz parametr RAL.

„WL.:” Gdy alarm czasu przebywania jest aktywowany, to po jego zgłoszeniu wyemitowany zostanie dźwięk alarmowy.

„WYL.:” Wyłącza alarm czasu przebywania.

„Throughput Alarm” [Alarm wydajności] (oznaczony „Wydajność”) — jeżeli alarm wydajności jest aktywowany, to alarm zostanie zgłoszony, jeżeli materiał ze zbiornika odbiorczego jest pobierany szybciej, niż suszarka może go przetworzyć. (Poziom materiału osiąga wartość parametru RTL nim upłynie czas VTS zależny od ustawienia czasu podciśnienia)

„WL.:” Gdy alarm wydajności jest aktywowany, to po jego zgłoszeniu wyemitowany zostanie dźwięk alarmowy.

„WYL.:” Wyłącza alarm wydajności.
„Opr. Zb. Podcisn.” (opróżnianie komory próżniowej) Alarm — jeżeli alarm opróżniania komory próżniowej jest aktywowany, to dozowanie materiału z komory próżniowej do zbiornika odbiorczego jest monitorowane z wykorzystaniem parametru CDR („Pon.próby opróż. zb”). Przy domyślnej nastawie parametru CDR 05003 co najmniej 50% materiału z komory próżniowej musi zostać wykryte w zbiorniku odbiorczym po dozowaniu. Jeżeli wartość ta jest niższa niż 50%, próba dozowania zostanie ponowiona trzykrotnie, po czym zgłoszony zostanie alarm. Próby będą ponawiane do czasu uzyskania wartości 50%.

„WL.:” Gdy alarm opróżniania komory próżniowej jest aktywowany, to po jego zgłoszeniu wyemitowany zostanie dźwięk alarmowy.

„WYL.:” Wyłącza alarm opróżniania komory próżniowej i próby opróżnienia komory próżniowej.

„Wydruk alarmow” — drukuje rejestr alarmów. Patrz strona 68.
„Wyczysc alarmy” — czyści rejestr alarmów. Patrz strona 68.

„Ust. Aut. zalecania” Automatycznie uruchamia suszarkę w ustawiony dzień(dni) i o ustawionej godzinie. Opcja umożliwia ustawienie jednorazowego automatycznego uruchomienia suszarki lub uruchamianie zgodnie z powtarzanym harmonogramem.
Opcję trzeba włączyć w menu „Ust. wyswietlacza” (patrz poniżej).

„Konf.zatrz.auto.” Automatycznie zatrzymuje suszarkę w ustawiony dzień(dni) i o ustawionej godzinie. Opcja umożliwia ustawienie jednorazowego automatycznego zatrzymania lub zatrzymywanie zgodnie z powtarzanym harmonogramem.
Opcję trzeba włączyć w menu „Ust. wyswietlacza” (patrz poniżej).

„Komunikacja” Konfiguracja komunikacji. Patrz strona 53.

„Ust. transportowe” „Ust. transportowe” — opcje przenoszenia materiału — opcjonalne — dedykowane wyjścia na karcie We./Wy. mogą zostać użyte do sterowania podajnikiem(-ami) innych producentów.
Patrz schemat połączeń karty I/O na stronie 84

• „Podajnik 1” — Wyl. / Auto — zatrzymuje podajnik, który zasila materiałem zbiornik grzejący na potrzeby sekwencji zatrzymania.
• „Podajnik 2” — Wyl. / Auto — gdy materiał jest gotowy, podajnik odbierze go ze zbiornika odbiorczego suszarki. Po aktywacji należy wybrać opcję wydajność lub masa.
• „Reset Sumatora” — zeruje sumaryczne wartości masy. Wartość sumaryczna to ilość materiału odebrana z suszarki od czasu ostatniego zerowania.
„Konf.dozow.„ „Masa napełnienia“ — pożądana masa materiału do umieszczenia w komorze próżniowej.

„Gęstość produktu“ — gęstość materiału wyrażona albo w funtach na stopę sześcienną, albo kilogramach na litr (zależnie od wybranej jednostki miary w menu „Ust. wagi”).

„Ust. wyświetlacza“ Wyświetlanie / ukrywanie informacji oraz opcji dostępnych na ekranach sterownika

„Tryb wszadu“ — WL./WYL. — po włączeniu, opcja suszenia partii materiału jest wyświetcona na ekranie głównym.

„Automatyczne wyłączenie:“ — WL./WYL. — po włączeniu, opcja rozpoczęcie automatycznego wyłączenia (wyłączenie o podanej godzinie) jest wyświetlana na ekranie opcji wyłączenia.

„Status I/O:“ — WL./WYL. — wyświetla informacje na temat wejść i wyjść na ekranie głównym.

„Info.cyklu:“ — WL./WYL. — wyświetla informacje o cyklu na ekranie głównym.

„Czas napełnienia“ — WL./WYL. — wyświetla czas napełnienia na ekranie głównym.

„Czas przebywania“ — po włączeniu wyświetlany jest licznik (parametr RAL), który wskazuje, kiedy uruchomi się alarm informujący o tym, że materiał znajduje się w zbiorniku odbiorczym za długo.

„Wyswietl“ — TEMP/WYDAJNOSC — pozwala wyświetlić na górnym czerwonym wyświetlaczu rzeczywistą temperaturę lub wydajność (funty lub kg na godzinę).

„WYL.” — komora próżniowa nie jest przedmuchiwana.
„CYK“ — komora próżniowa jest przedmuchiwana w czasie przypisanym na cykl podciśnienia (VTs).
„WL.” — komora próżniowa jest przedmuchiwana w czasie przypisanym na cykl suszenia próżniowego (VTs) i
„Przerwa oproz” — przerwa w sekundach między przedmuchami.

„Czas oproz” — czas w sekundach, przez jaki trwa przedmuch.

„Ust. Wagi”
„Ust. Wagi” — patrz strona 56.

„Parametry”
Dostęp do parametrów. Patrz strona 42.

„Ust.Wstępne grza.”
„Tryb.wst.grz” — Auto lub czas — czas nagrzewania wstępnego w zbiorniku grzejącym. Domyślny czas nagrzewania wstępnego to 30 minut.

„Wstępne nagrzewanie:” — opcja ta definiuje czas wstępnego nagrzewania.

„Ust. Wydruku”
„Ust. Wydruku” — patrz strona 68
- „Rejestr:” Włączony/wyłączony
- „Przerwa:” 60s (temperatury, ciśnienie)
- „Zawartosc:” Standard/szczegóły
- „Drukuj wszystko” — drukuje parametry, zdarzenia i alarmy.
- „Wydruk parametrów” — drukuje listę parametrów do pliku na pamięci USB.
- „Wydruk zdarzeń” — drukuje rejestr zdarzeń do pliku na pamięci USB.
- „Wydruk alarmów” — drukuje rejestr alarmów.
- „Wyczysc zdarzenia” — usuwa wszystkie wpisy w rejestrze zdarzeń
- „Wyczysc alarmy” — usuwa wszystkie wpisy w rejestrze zdarzeń
- „Copy Log File” [Kopiuj plik rejestr] — kopiuje plik rejestr bez zmian na pamięć USB.

„System”
„Wyswietl Firmware” — wyświetla informacje o procesorze, karcie l/O, modelu, module rozruchowym.
„Jezyk” — umożliwia wybranie języka.
„Ustaw zegar” — ustawienie godziny, daty i formatu daty.
„Pamiec” — aktualny stan pamięci.
„Haslo” — pozwala ustawić hasło menu konfiguracji. Domyślne hasło to 22222. Ustawienie hasła 00000 powoduje wyłączenie ochrony hasłem.
„Przywroc parametry” — przywraca wszystkie parametry do wartości fabrycznych.
„Przywroc wszystko” — przywraca ustawienia fabryczne.

OSTRZEŻENIE: Z opcji przywracania wszystkich ustawień do wartości fabrycznych należy korzystać tylko z
zalecenia technika firmy Maguire.

„Akt. Firmware” — aktualizacja firmware suszarki VBD-150. Patrz strona 80.

„Ust. Temperatury” „Jedn.:” Fahrenheit (°F) lub Celsjusz (°C)

„Precyzja wyświetli”: Po ustawieniu wartości „Standard” temperatura wyświetlana jest w całych stopniach. Po ustawieniu wartości „Wysoka” temperatura wyświetlana jest z dokładnością do dziesiątej części stopnia.

„Oszcz.Engeri” (WYL./WL.): Włącza tryb oszczędzania energii. W trybie oszczędzania energii urządzenie minimalizuje ilość energii użytej do pogrzania granulatu poprzez wyłączanie grzałki i dmuchawy, gdy jest to możliwe. Gdy temperatura na wylocie zbiornika grzejącego osiągnie temperaturę ustawioną w konfiguracji trybu oszczędzania energii („Ust.temp.oszcz.energii”), to grzałka i dmuchawa zostaną wyłączone na czas ustawiony w konfiguracji trybu oszczędzania energii („Czas oszcz.energii”) lub do końca cyklu, zależnie co nastąpi wcześniej.

„Ust.temp.oszcz.energii” (parametr ESM): Domyślna wartość to 125°F.

„Czas oszcz.energii” (Parametr EST): Domyślny czas to 30 minut.

„Pochylnia” — WYL./CZAS WST. NAGRZ/WL.: Kontrola narastania temperatury.

WYL. — narastanie temperatury nie jest stosowane.

„CZAS WST. NAGRZ” — narastanie temperatury (zależne od parametru RMP) następuje tylko w czasie cyklu nagrzewania wstępnego.

WL. — narastanie temperatury (zależne od parametru RMP) następuje w czasie cyklu nagrzewania wstępnego i w kolejnych cyklach.

„Ust. podcisnienia” „Czas podc (Tvac):” Nastawa czasu cyklu suszenia próżniowego.

„Pressure Set Point (Pset):” [Nastawa ciśnienia (Pset)]: Nastawa podciśnienia.

„Pressure Delta (Pdelt):” [Delta ciśnienia (Pdelt)]: Strefa nieczułości podciśnienia.

„Wyswietl:” ABS/DIFF Wskazanie ciśnienia powietrza, ciśnienie bezwzględne (względem ciśnienia zerowego lub idealnej próżni, ciśnienie różnicowe względem ciśnienia atmosferycznego).

Jedno.: Umożliwia wybór jednostki mmHg (milimetry słupa rtęci) lub inHg (cale słupa rtęci)
Wszystkie sterowniki suszarek VBD pracują na podstawie pewnych wewnętrznych PARAMETRÓW. Ponieważ knienci mają bardzo różne wymagania, zapewniliśmy dostęp do tych parametrów za pomocą klawiatury. W większości przypadków parametry te nie muszą być zmieniane. Niektóre parametry odpowiadające często regulowanym wartościami można zmienić na ekranie głównym. Informacje na temat dostępu i sposobu zmiany parametrów znaleźć można w części Zmiana parametrów w tej sekcji:

Parametry dmuchawy:
- **BDT** „Op. Startu dmuchawy”
- **BLF** „Falownik Dolny Limit”
- **BHF** „Falownik górny limit”
- **BDF** „VFD Frequency” [Częstotliwość falownika]
- **BZL** „Fal. Poziom zero”
- **BLA** „Fal. Reg. Poziomu”
- **BHT** „Fal. Przep. Gor. Pow.”

Parametry grzałki:
- **PTS** „Temp.wstęp.nagrzew.”
- **PHT** „Wstępne nagrzewanie”
- **PTD** „Zadana roznica temp.”
- **RTS** „Run Temperature Set-Point” [Nastawa tem.dział.]
- **PT1** „PD Loop Proportional” [Proporcjonalna pętla PD]
- **DT1** „PD Loop Derivative” [Roznicz. pętla PD]
- **UT1** „PD Loop Update Time” [Odswezanie pętli PD]
- **OT1** „Heat1 Przekr. Temp.”
- **NH1** „Heat1 Brak Ciepła”
- **SO1** „Heat1 Odchyłka Temp. Procent”
- **MP1** „Heat1 Max. Procent”
- **MAX** „Maks.Wart.Zad.Temp.”
- **ESM** „Energy Saver Mode” [Tryb oszcz. energii]
- **EST** „Czas oszcz.energii”
- **RMP** „Temperature Ramp Settings” [Ustawienia narastania temperatury]
- **CTM** „Temp. wysuzenia”
- **CTR** „Limit czasu wysusz.”

Parametry dozowania:
- **VCH** „Wys. Poz. Zb. prozni”
- **VCL** „Niski poz.zb.prozni”
- **RHH** „Wys. Poz.Zb.odb.mat.”
- **RHL** „Niski poz.zbo.db.mat”
- **BLK** „Obojczyk produktu”
- **VFR** „Wsp.Napeln.zb.prozni”
- **VDR** „Wsp.opr.zb.prozni”
- **VFT** „Czas napeln. Zb.”
- **VDT** „Czas oprożniania Zb.”
- **FLA** „Czas opóź.nap.”
- **DLA** „Czas opóź.opr.”
- **VGD** „Opz.Od otw.zaw.Prozn”
- **VFA** „Reg. Napeln. Zb.”
- **HDD** „Zb.Grzania opz.zsypu”
- **VCT** „Prog Pust.Zb.prozni”
- **CDR** „Pon.próby opróż. zb.”
- **RAL** „Alarm czasu przebywania”
- **BCH** „Wielkosc wsadu”
- **LTP** „Prog zał.2 podajnika”
- **LTC** „Prog wył.2 podajnika”
- **HHV** „Objetosc Zb. grzania”
- **HHU** „Wys.poz. w zb.grz.” (opcjonalny)
- **HLA** „Ala.poz.zb.grz.” (opcjonalny)

Parametry systemu:
- **ELT** „Czas rejestr.zdarzen”

Parametry ogniwa obciążnikowego:
- **KDF** „Dopuszcz. Wach. wagi”
- **LST** „Czas stabilnego pom.”
- **LCZ** „Dop.wsk dla tarowa.”
- **WST** „Czas osadzania masy”
- **LZ1** „Zero Waga 1”
- **LZ2** „Zero Waga 2”

Parametry podciśnienia:
- **VTS** „Ust. Czasu Podcisn.”
- **VPL** „Niskie podciśnienie”
- **VPD** „Prog zal.Gen.podcis.”
- **VSO** „Wyprz. Wyrown. Cisn.”
- **LVT** „Limit czasu prożni”
- **NVT** „Lim. czas.Gen.Podcisz.”
- **VPT** „Czas oprożnienia zbiornika”
- **VPI** „Przerwa czyszcz.Zb.”
- **ATM** „Cisnienie atmosf.”
Jednostki parametrów

<table>
<thead>
<tr>
<th>Jednostka</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>CZAS</td>
<td>Wyrażony w sekundach lub pełnych minutach.</td>
</tr>
<tr>
<td>PROCENT</td>
<td>Wyrażone w pełnych procentach.</td>
</tr>
<tr>
<td>TEMPERATURA</td>
<td>Wyrażona w pełnych stopniach (Fahrenheita lub Celsjusza).</td>
</tr>
<tr>
<td>WARUNEK</td>
<td>Służy do obliczenia wartości.</td>
</tr>
</tbody>
</table>

Skrót 3-literowy Nazwa parametru (jednostki) — domyślna wartość parametru

Opis parametrów

Parametry dmuchawy

BDT „Op. Startu dmuchawy” (Czas w sekundach) — 00402
Pierwsze dwie cyfry oznaczają opóźnienie w sekundach między uruchomieniem dmuchawy i uruchomieniem grzałki zbiornika grzejącego. Ostatnie dwie cyfry oznaczają opóźnienie w sekundach między wyłączeniem dmuchawy i wyłączeniem grzałki zbiornika grzejącego.

BLF „Falownik Dolny Limit” (Hz) — 00025 (Parametr widoczny, gdy urządzenie posiada opcjonalny falownik)
Minimalna częstotliwość falownika w Hz, na którą można ustawić dmuchawę w menu ustawień dmuchawy. Minimalna wartość dla tego parametru to 00025.

BHF „Falownik gorny limit” (Hz) — 00060 (Parametr widoczny, gdy urządzenie posiada opcjonalny falownik)
Maksymalna częstotliwość falownika w Hz, na którą można ustawić dmuchawę w menu ustawień dmuchawy. Maksymalna wartość dla tego parametru to 00060.

BDF „VFD Frequency” [Częstotliwość falownika] (Hz) — 00060 (Parametr widoczny, gdy urządzenie posiada opcjonalny falownik)
Częstotliwość w Hz, z jaką falownik zasila silnik dmuchawy. Obroty dmuchawy oraz przepływ powietrza są bezpośrednio proporcjonalne do tej częstotliwości.

BZL „Fal. Poziom zero” (%) — 00045 (Parametr widoczny, gdy urządzenie posiada opcjonalny falownik)
Poziom w zbiorniku grzejącym wyrażony jako wartość procentowa, dla którego falownik zmniejsza prędkość do nastawy BLA.

BLA „Fal. Reg. Poziomu” (Hz) — 00025 (Parametr widoczny, gdy urządzenie posiada opcjonalny falownik)
Częstotliwość w Hz, z jaką dmuchawa będzie pracować, gdy poziom w zbiorniku grzejącym jest równy lub niższy niż poziom parametru BZL. Redukcja prędkości pracy dmuchawy pozwala uniknąć gwałtownego mieszania materiału, gdy poziom w zbiorniku grzejącym jest niski.

BHT „Fal. Przep.Gor.Pow.” (%) — 00100 (Parametr widoczny, gdy urządzenie posiada opcjonalny falownik)
Procentowa zmiana czasu pracy grzałki w chwili, gdy zsypywanie materiału ze zbiornika grzejącego zostało zakończone i uruchomiana jest dmuchawa. Skrócenie
czasu pracy grzałki (ze 100%) skraca czas wystawienia nowego materiału ładowanego do zbiornika grzejącego na wysoką temperaturę. Aktywowane, gdy czujnik poziomu wskazuje wartość poniżej ustawienia parametru BZL. Ustawienie pierwszej cyfry na 1 powoduje pominięcie regulacji procentowej i w praktyce wyłącza grzałkę, gdy poziom materiału w zbiorniku jest poniżej wartości parametru BZL.

Parametry dozowania

VCH „Wys. Poz. Zb. prozni” — masa — 00035
Ilość materiału dozowana do komory próżniowej ze zbiornika grzejącego. Nazywana również „masą napełnienia”.

VCL „Niski poz.zb.prozni” — masa — 00005
Parametr VCL aktywuje dwa warunki. W trybie czyszczenia zawór napełniający komory próżniowej zostanie otwarty, gdy ilość materiału w komorze próżniowej jest równa lub mniejsza niż ta masa. W czasie rozpoczynania cyklu automatycznego, ostrzeżenie „materiał w komorze próżniowej” zostanie zgłoszone, gdy ilość materiału jest równa lub większa niż ta wartość.

RHH „Wys. Poz.Zb.odb.mat.” — masa — 00035
Ilość materiału (poziom wysoki) dozowana do zbiornika odbiorczego z komory próżniowej.

RHL „Niski poz.zbo.db.mat” — masa — 00005
Parametr RHL aktywuje trzy warunki. W trybie czyszczenia zawór spustowy komory próżniowej zostanie otwarty, gdy ilość materiału w zbiorniku odbiorczym jest równa lub mniejsza niż ta masa. W czasie rozpoczynania cyklu automatycznego, ostrzeżenie „materiał w zbiorniku odbiorczym” zostanie zgłoszony, gdy ilość materiału jest równa lub większa niż ta wartość. W trybie czyszczenia ilość materiału w zbiorniku odbiorczym musi być równa lub mniejsza niż ta wartość, aby rozpocząć zsyp z komory próżniowej.

BLK „Gestosc produktu” — gęstość materiału wyrażona albo w funtach na stopę sześciennej, albo kilogramach na litr (zależnie od wybranej jednostki miary w menu „Ust. wagi”). Służy jako zabezpieczenie przed przesypaniem.

VFR „Wsp.Napeln.zb.prozni” — gramy/sekundę — 00580
Adaptowana szybkość napełniania komory próżniowej w sekundach. Służy do obliczenia dokładnego czasu napełniania komory próżniowej.

VDR „Wsp.opr.zb.prozni” — gramy/sekundę — 00580
Adaptowana szybkość opróżniania komory próżniowej w sekundach. Służy do obliczenia dokładnego czasu opróżniania komory próżniowej.

VFT „Czas napeln. Zb.” (Czas w sekundach) — 00035
Czas w sekundach, przez jaki zawór napełniający komory próżniowej będzie otwarty, chyba że wcześniej osiągnięty zostanie wysoki poziom w komorze próżniowej (VTH).
VBD® — suszarka próżniowa®

Wer. 10 marzec 2017 r.

45

VDT „Czas opróżniania zb.” (Czas w sekundach) — 00035

Czas w sekundach, przez jaki zawór spustowy komory próżniowej będzie otwarty, chyba że wcześniej osiągnięty zostanie wysoki poziom w zbiorniku odbiorczym (RTH).

FLA „Czas opóź.nap.” — (ms) — 00175

Czas w milisekundach, o jaki jest wydłużona każda operacja otworzenia zaworu napełniającego komory próżniowej. Parametr ten kompensuje opóźnienie otworzenia zaworu napełniającego, wynikające ze zwłoki działania każdego urządzenia mechanicznego.

DLA „Czas opóź.opr.” — (ms) — 00100

Czas w milisekundach, o jaki jest wydłużana każda operacja otworzenia zaworu spustowego komory próżniowej. Parametr ten kompensuje opóźnienie otworzenia zaworu spustowego, wynikające ze zwłoki działania każdego urządzenia mechanicznego.

VGD „Opz.Od otw.zaw.Prozn” (Czas w sekundach) — 00303

Format: XXXYY — XXX = dolna zasuwa komory próżniowej, YY = górna zasuwa komory próżniowej

Czas w sekundach po otworzeniu zasuw komory próżniowej, po którym może zostać otworzony zawór napełniający lub spustowy komory próżniowej. (Otworzenie zaworu napełniającego lub spustowego komory próżniowej).

VFA „Reg. Napeln. Zb.” (liczba prób, procent) — 00310

Parametr składający się z dwóch części. Pierwsze trzy cyfry to liczba prób napełnienia komory próżniowej (domyślnie 3 próby). Ostatnie dwie cyfry to minimalny dopuszczalny procent docelowej maksymalnej masy materiału umieszczanego w komorze próżniowej (parametr VCH). Po trzeciej nieudanej próbie generowany jest alarm „brak mat.zb.podcis.”, a suszarka kontynuuje próby napełnienia.

HDD „Zb.Grzania opz.zsypu” — sekundy — 0004

Opóźnienie w sekundach między wyłączeniem układu grzałki i zsypaniem materiału ze zbiornika grzejącego do komory próżniowej. To opóźnienie zapewnia czas potrzebny na zatrzymanie dmuchawy.

VCT „Prog Pust.Zb.prozni” — gramy/sekundę — 00115

W czasie opróżniania komory próżniowej (do zbiornika odbiorczego) natężenie przepływu materiału jest nieustannie obliczane. Gdy natężenie przepływu osiągnie wartość parametru VCT, co sygnalizuje, że komora jest pusta, to zawór spustowy komory próżniowej zostanie zamknięty.

CDR „Pon.próby opróż. zb.” (%/próbę) — 05003

 Kontroluje alarm opróżniania komory próżniowej.

Format: XXXYY — XXX = wartość procentowa, YY = liczba prób

Jeżeli w czasie przesypania materiału z komory próżniowej do zbiornika odbiorczego wykryte zostanie, że do zbiornika odbiorczego zsypano mniej niż 50% docelowej ilości materiału, suszarka ponowi próbę zsypania materiału. Po 3 nieudanych próbach zgłaszany jest alarm opróżniania komory próżniowej.
RAL „Alarm czasu przebywania” — funty/minuty — 05120
Gdy alarm czasu przebywania jest aktywowany, ten parametr decyduje, kiedy zostanie on wygenerowany. Ten parametr składa się z dwóch zmiennych. Pierwsze dwie cyfry to masa (w funtach lub kilogramach), a ostatnie trzy cyfry to minuty. Na przykład, jeżeli po 120 minutach ze zbiornika odbiorczego usunięte zostanie mniej niż 5 funtów (lub kilogramów) materiału, to alarm czasu przebywania zostanie włączony (jeżeli jest aktywowany, patrz rozdział dot. menu ustawień alarmów).

BCH „Tryb wsadu” — masa (funty/kg) — 00000
Ilość materiału w funtach lub kilogramach, która zostanie wysuszona w ramach danej partii.

LTP „Prog zal.2 podajnika” — masa (1/10 funta lub kilograma) — 00005
Jeżeli podajnik 2 (podajnik za suszarkę) jest aktywowany, a w zbiorniku odbiorczym znajduje się większa ilość materiału niż ustalono w tym parametrze, to wyjście podajnika 2 zostaje włączone.

LTC „Prog wyl.2 podajnika” — masa/minutę — 00005
Jeżeli podajnik 2 (podajnik za suszarkę) jest ustawiony na wartość „WYDAJNOSC” i ilość materiału w zbiorniku odbiorczym jest równa lub mniejsza niż wartość parametru LTP oraz wydajność jest niższa niż ten parametr (LTC), to wyjście podajnika 2 zostaje wyłączone.

HHV „Objetosc Zb. grzania” — dziesiąta część stopy sześciennej lub dziesiąta część litra.
Ilość materiału, jaką można umieścić w zbiorniku grzejącym, uwzględniając martwą przestrzeń na górze oraz odległość, na jaką podajnik wystaje nad zbiornikiem grzejącym. Ten parametr służy do obliczenia czasu rozpoczęcia automatycznego wyłączenia, gdy podajnik nr 1 jest ustawiony na pracę w trybie auto. Po zainstalowaniu opcjonalnego rozszerzenia zbiornika grzejącego trzeba zmienić wartość tego parametru.

HHU „Wys. poz.zb. grzania” — (%) — 00095
Poziom, wyrażony jako procent, do jakiego zbiornik grzejący zostanie napełniony, gdy podajnik nr 1 jest ustawiony w trybie AUTO (a przewód sygałowy podajnika zbiornika grzejącego jest podłączony szeregowo do przekaźnika sterującego podajnika nr 1). Należy pamiętać, że strefa nieczułości wynosi 5%.

HLA „Alarm Niski poz.zbo.db.mat” — (%) — 00050
Poziom, wyrażony jako procent, na którym zgłaszany jest alarm poziomu w zbiorniku grzejącym, jeżeli alarm ten jest aktywowany w ustawieniach alarmu. Jeżeli w zbiorniku grzejącym poziom jest równy lub mniejszy niż ta wartość, alarm zostanie zgłoszony.
Parametry grzałki

PTS „Heat1 Wart.Zad.Temp.” (temperatura) — 00150
Nastawa temperatury powietrza na wlocie zbiornika grzejącego w °F lub °C

PHT „Wstęp.nagr” — czas w minutach — 00030
Czas w minutach, przez jaki zbiornik grzejący jest nagrzewany w czasie uruchamiania zimnego urządzenia przed rozpoczęciem normalnej sekwencji suszarki.

PTD „Zadana roznica temp.” — stopnie — 00030
Gdy tryb nagrzewania wstępnego jest ustawiony na AUTO (a nie czas), to zakończy się on, gdy temperatura powietrza na wylocie zbiornika grzejącego (T2) będzie różnić się o nie więcej niż wartość parametru PTD od temperatury powietrza na wlocie zbiornika grzejącego (T1).

RTS „Nastawa tem.dział” — stopnie — 00150
Nastawa temperatury powietrza na wlocie zbiornika grzejącego w °F lub °C. Jest to temperatura, do jakiej żywica jest nagrzewana przed cyklem suszenia próżniowego, która na ekranie stanu oznaczona jest skrótem „T1s”.

PT1 „Heat1 Wzmocnienie” — warunek — 00040
Ten parametr służy do regulowania mocy grzałki zbiornika grzejącego. Parametr ten można zmieniać tylko po konsultacji z technikiem firmy Maguire. Warunek proporcjonalny (lub „wzmocnienie”) zmienia moc grzałki zbiornika grzejącego proporcjonalnie do bieżącej wartości błędu różnicy między nastawą a temperaturą rzeczywistą.

DT1 „Heat1 Rozniczka” — warunek — 00015
Ten parametr służy do regulowania mocy grzałki zbiornika grzejącego. Parametr ten można zmieniać tylko po konsultacji z technikiem firmy Maguire. Tempo zmiany błędu procesowego jest obliczane poprzez ustalenie nachylenia krzywej błędu w czasie (tzn. jego różniczka względem pierwszego punktu w czasie) i mnożenie tej szybkości zmiany poprzez przyrost różniczki.

UT1 „Heat1 Odswezanie” — czas — 00415
Ten parametr składa się z dwóch części. Pierwsze trzy cyfry to czas w sekundach między aktualizacją regulacji temperatury, jeżeli temperatura na wlocie zbiornika grzejącego (T1a) PRZEKRACZA wartość nastawy. Ostatnie dwie cyfry to czas w sekundach między aktualizacją regulacji temperatury, jeżeli temperatura na wlocie zbiornika grzejącego (T1a) jest MNIEJSZA niż wartość nastawy.

OT1 „Heat1 Over-Temp Alarm” [Alarm przekroczenia temperatury] — procent — 06006
Pierwsze trzy cyfry to czas w sekundach, przez jaki rzeczywista temperatura musi przekraczać temperaturę nastawy grzałki zbiornika grzejącego o wartość w stopniach równą 4. i 5. cyfry tego parametru, po upływnięciu którego włączany jest alarm przekroczenia temperatury.
NH1 „Zb. grz.brak ciepla” — sekundy — 120
Jest to maksymalny czas w sekundach, po którym rozpoczyna się cykl nagrzewania, w którym nastąpić musi jeden z poniższych dwóch warunków: Temperatura musi wzrosnąć o 20° lub temperatura musi przybliżyć o co najmniej 20 procent do temperatury docelowej. Jeżeli żaden z tych warunków nie zostanie spełniony, włączony zostanie alarm „BRAK CIEPLA”. Oznacza to usterkę grzałki lub dmuchawy. Ten parametr stanowi zabezpieczenie grzałki przed przepaleniem w przypadku usterki dmuchawy lub zablokowania drogi przepływu powietrza.

SO1 „Heat Hopper Set-Point Offset” [Odchyłka nastawy zbiornika grzejącego] — stopnie — 03002
Odchyłka nastawy temperatury zbiornika grzejącego. Służy do sterowania nagrzewaniem. Odchyłka od temperatury docelowej w stopniach. Pierwsze 3 cyfry to liczba sekund, przez jaką utrzymywana jest odchyłka nastawy temperatury. 4. i 5. cyfra to liczba stopni poniżej docelowej nastawy.

MP1 „Heat Hopper Maximum Percent” [Maks. procent zbiornika grzejącego] — procent — 00100
Ogranicza cykl pracy grzałki.

MAX „Maks.Wart.Zad.Temp.” (temperatura) — 00350
Maksymalna dopuszczalna temperatura w pełnych stopniach.

ESM „Tryb Oszcz.Energi” — temperatura — 000125
Gdy tryb oszczędzania energii jest aktywowany i temperatura powietrza wypływającego ze zbiornika grzejącego jest równa lub przekracza tę nastawę oraz upłynie czas ustawiony w parametrze czasu trybu oszczędzania energii, tryb ten zostanie włączony.

EST „Czas oszcz.energii” — minuty — 00030
Gdy tryb oszczędzania energii jest aktywowany i został włączony, to czas oszczędzania energii jest czasem pracy w trybie oszczędzania energii, po upłynięciu którego tryb ten jest wyłączony, a suszarka powraca do pracy w normalny sposób.

RMP „Temperature Ramp Settings” [Ustawienia narastania temperatury] — (kroki/minuty/stopnie) — 52036
Format: XYYZZ — X = liczba kroków, YY = czas narastania w minutach, ZZ = różnica temperatur
Na przykład dla parametru RMP ustawionego na 52020: Gdy narastanie temperatury jest włączone, temperatura będzie przez 20 minut zwiększana do 20°C, w 5 krokach co 4°C.

CTM „Temp. wystudzenia” — stopnie — 00120 Fahrenheit lub 00050 Celsjusz
Temperatura docelowa schładzania zbiornika grzejącego w czasie planowanego zatrzymania.

CTR „Limit czasu wystudz.” — minuty — 00030
Docelowy czas do schłodzenia do temperatury docelowej (parametr CTM).
Parametry ogniwa obciążnikowego

KDF "Dopuszcz. Wach. wagi" — pomiary — 00006
Maksymalna dopuszczalna fluktuacja nieprzetworzonych pomiarów ogniwa obciążnikowego zapewniająca stabilny odczyt masy.

LST "Czas stabilnego pom." — milisekundy — 00100
Czas w milisekundach, przez jaki nieprzetworzone pomiary ogniwa obciążnikowego muszą pozostać w zakresie parametru KDF, aby zapewnić stabilny odczyt masy.

LCZ "Dop.wsk.dla tarowa." — pomiary — 01000
Minimalne pomiary dopuszczalne w czasie tarowania ogniw obciążnikowych.

WST "Czas osadzania masy" — sekundy — 00005
Opóźnienie w sekundach od czasu zamknięcia zaworu napełniającego komory próżniowej, które umożliwia opadnięcie materiału w suszarce i precyzyjne zważenie.

LZ1 "Zero Waga 1" — pomiary — 00000
Fabrycznie ustawiona wartość odniesienia wyrażona w pomiarach dla ogniwa obciążnikowego zbiornika odbiorczego. Parametr ten można zmieniać tylko po konsultacji z technikiem firmy Maguire lub jeżeli ogniwa obciążnikowe zostały wymienione. W przypadku wymiany ogniw obciążnikowych dostarczane są instrukcje. Gdy parametr ten jest ustawiony na wartość zero (00000), ograniczenia kalibracji ogniwa obciążnikowego są wyłączone.

LZ2 "Zero Waga 2" — pomiary — 00000
Fabrycznie ustawiona wartość odniesienia wyrażona w pomiarach dla ogniwa obciążnikowego komory próżniowej. Parametr ten można zmieniać tylko po konsultacji z technikiem firmy Maguire lub jeżeli ogniwa obciążnikowe zostały wymienione. W przypadku wymiany ogniw obciążnikowych dostarczane są instrukcje. Gdy parametr ten jest ustawiony na wartość zero (00000), ograniczenia kalibracji ogniwa obciążnikowego są wyłączone.

Parametry podciśnienia

VTS "Ust. Czasu Podcisn." (czas w minutach) — 00020
Czas trwania cyku suszenia próżniowego w minutach.

VPL "Nastawa niskiego podcisnienia" (mm Hg bezwzgl.) — 00080
Ciśnienie (bezwzględne mm, bezwzględne cale, względne mm, względne cale), które układ podciśnienia stara się wytworzyć przed zatrzymaniem i utrzymaniem tego ciśnienia. Domyślnie przedstawione jest ciśnienie bezwzględne w mm.

VPD "Prog zal.Gen.podcis." (mm słupa rtęci) — 05020
Ten parametr składa się z dwóch części. Pierwsze dwie cyfry to czas w sekundach, przez jaki generator podciśnienia będzie pracował po osiągnięciu wartości nastaw VPL. Ostatnie trzy cyfry to różnica ciśnienia powyżej parametru...
VPL, przy której generator podciśnienia włączy się ponownie. Ta wartość to ciśnienie w mm słupa rtęci ponad wartość parametru VPL.

VSO „Wyprz. Wyrown. Cisn.” — sekundy — 00015
Czas w sekundach przed upłynięciem nastawy czasu suszenia próżniowego (VTS), przy jakim rozpocznie się wyrównywanie ciśnienia w komorze próżniowej.

LVT „Limit czasu prozni” — sekundy — 00120
Pierwsze dwie cyfry to czas w sekundach, przez jaki generator podciśnienia będzie pracował przed zgłoszeniem ALARMU NISKIEGO PODCIŚNIENIA. Generator podciśnienia będzie nadal próbował uzyskać zadane podciśnienie po uruchomieniu alarmu.

NVT „Lim. czas.Gen.Podcsn.” (próby, czas w sekundach) — 000345
Pierwsze trzy cyfry to liczba prób przestawienia zasuwy komory próżniowej, jeżeli uzyskanie podciśnienia nie powiedzie się. W czasie kolejnych prób zasuwy komory są otwierane i zamykane. Ostatnie dwie cyfry to czas w sekundach, w jakim podciśnienie w komorze próżniowej musi spaść o 200 mm słupa rtęci poniżej ciśnienia atmosferycznego, aby nie było konieczne wykonanie kolejnej próby.

VPT „Czas oproznienia zbiornika” — sekundy — 00005
Parametr ten stanowi dodatkowy czas w sekundach dodawany do obliczonego czasu wyrównania z ciśnieniem atmosferycznym, który umożliwia uzyskanie rzeczywistego wyrównania ciśnienia.

VPI „Przerwa opróż. zbiornika” — sekundy/sekundy — 15180
Częstotliwość i czas trwania przedmuchu komory próżniowej suchym powietrzem. Domyślna częstotliwość to 3 minuty (180 sekund), a czas przedmuchu 15 sekund.

ATM „Cisnienie atmosf.” — mm Hg (bezwzględne) — 00760

Parametry systemu

ELT „Czas rejestr.zdarzen” (Czas w sekundach) — 00060
Częstotliwość rejestrowania danych (jeżeli rejestrowanie jest aktywowane) w sekundach.
Zmianie parametrów

Dostęp do parametrów wewnętrznych możliwy jest w trybie konfiguracji. Domyślne hasło trybu konfiguracji to: 2222

Zmianę PARAMETRÓW można wykonywać tylko przy zatrzymanym urządzeniu.

<table>
<thead>
<tr>
<th>Nacisnąć:</th>
<th>aby zmienić tryb wyboru na ikonę kół zębatych.</th>
<th>Na ekranie pojawi się:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter:</td>
<td>5-cyfrowe hasło. (Domyślne hasło to 22222). Za pomocą przycisków zmienić nastawę. Nacisnąć ENTER, aby przejść do następnej nastawy i zakończyć.</td>
<td>Na ekranie pojawi się:</td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>przycisk kilka razy, aby przejść do opcji „Change Parameters” [Zmień parametry]. Nacisnąć ENTER, aby wybrać opcję „Change Parameters” [Zmień parametry].</td>
<td>Na ekranie pojawi się:</td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>przycisk, aby przejść między parametrami. Nacisnąć ENTER, aby wybrać parametr.</td>
<td>Na ekranie pojawi się:</td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>Gdy parametr jest wybrany, skrajnie lewa cyfra jego wartości jest podświetlona. Za pomocą przycisków zmienić nastawę. Nacisnąć ENTER, aby przejść do następnej nastawy i zakończyć.</td>
<td>Na ekranie pojawi się:</td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>Po zakończeniu edycji parametrów nacisnąć przycisk, aby przejść na dół listy do pozycji „COFNIJ”. Przy wybranej pozycji „COFNIJ”, nacisnąć ENTER, aby wyjść z menu parametrów. Z edycji parametrów można również wyjść poprzez jednokrotne naciśnięcie czerwonego przycisku zasilania.</td>
<td>Na ekranie pojawi się:</td>
</tr>
</tbody>
</table>

Importante!

| **Maguire Products, Inc.** | **Wer. 10 marzec 2017 r.** | **51** |
Tryb wsadu

Po włączeniu trybu wsadu (informacje na ten temat można znaleźć w ustawieniach wyświetlaczca w menu konfiguracji na stronie 36) suszarka wysuszy zdefiniowaną ilość materiału, a następnie automatycznie się zatrzyma i wyświetli komunikat informujący o zakończeniu partii materiału.

Aby uruchomić suszarkę w trybie wsadu, należy wykonać następujące kroki:

<table>
<thead>
<tr>
<th>Nacisnąć:</th>
<th>aby zmienić tryb wyboru na ikonę kół zębatych.</th>
<th>Na ekranie pojawi się:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter:</td>
<td>5-cyfrowe hasło. (Domyślne hasło to 22222). Za pomocą przycisków ◀ ◀ można zmienić nastawę. Nacisnąć ENTER, aby przejść do następnej nastawy i zakończyć.</td>
<td>Na ekranie pojawi się:</td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>przycisk ◀ kilka razy, aby przejść do opcji „Ust. wyświetlacz”. Nacisnąć ENTER, aby wybrać opcję „Ust. wyświetlacz”.</td>
<td>Na ekranie pojawi się:</td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>przycisk ◀ jeden raz, aby wybrać tryb wsadu. Nacisnąć przycisk ENTER, aby aktywować tryb wsadu.</td>
<td>Na ekranie pojawi się:</td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>Po zakończeniu przejść do pozycji „COFNIJ” i nacisnąć przycisk ENTER, aby wyjść z ustawień komunikacji.</td>
<td>Na ekranie pojawi się:</td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>Aby powrócić na ekran główny. Spowoduje to wyświetlenie komunikatu „Uruch sszrke(wkld)”, na ekranie głównym.</td>
<td></td>
</tr>
</tbody>
</table>

Aby uruchomić suszarkę w trybie wsadu:

<table>
<thead>
<tr>
<th>Nacisnąć:</th>
<th>przycisk ◀, aby przejść do pozycji „Uruch sszrke(wkld)” na ekranie głównym.</th>
<th>Na ekranie pojawi się:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nacisnąć:</td>
<td>ENTER, aby uruchomić suszarkę w trybie wsadu.</td>
<td>Na ekranie pojawi się:</td>
</tr>
</tbody>
</table>
Konfiguracja komunikacji

Oprogramowanieuszarki VBD-150 obsługujące funkcję komunikacji korzysta z komunikacji Ethernet w protokole MLAN. Więcej informacji na temat protokołu MLAN i uszarki VBD-150 znaleźć można w podręczniku protokołu MLAN dostępnym na stronie internetowej firmy Maguire Products Inc.

CRFINJ
Masa wsadu: 0 (funty)
NASTĘPNY |
| --- | --- | --- | --- |
| Nacisnąć: | Po zakończeniu za pomocą przycisku ‹ przjść do pozycji „NASTĘPNY” i nacisnąć ENTER. Na tym ekranie można zmienić nastawę temperatury, czas wstępnego nagrzewania, czas suszenia próżniowego za pomocą przycisków ‹ ‒ ›. Po zakończeniu wybrać pozycję „START” i nacisnąć ENTER, aby rozpocząć proces suszenia w trybie wsadu. Po wysuszeniu ustalonej masy w trybie wsadu, uszarka automatycznie zatrzyma się i wyświetlony zostanie komunikat „WYŁACZENIE WKLADU”. | Na ekranie pojawi się: | Setpoint Temp.: 150F
Wstęp.nagrz.: 35m
Czas podc.: 20m
START |
| Nacisnąć: | aby zmienić tryb na ikonę kół zębatych. | Na ekranie pojawi się: | SETUP
PODAJ HASLO
0 _ _ _ _ |
| Nacisnąć: | 5-cyfrowe hasło. (Domyślne hasło to 22222). Za pomocą przycisków ‹ ‒ › można zmienić nastawę. Nacisnąć ENTER, aby przejść do następnej nastawy i zakończyć. | Na ekranie pojawi się: | SETUP
UST. alarmow
„UST. Aut. zalaczania”
Change Password ▼ |
| Nacisnąć: | przycisk ‹ kilka razy, aby przejść do opcji „Komunikacja”. Nacisnąć ENTER, aby wybrać opcję „Komunikacja”. | Na ekranie pojawi się: | TRYB=UST.
COFNIIJ
MLAN ID 001
Podglad Adresu MAC
Adres TCP/IP ▼ |
| Komunikacja MLAN Ethernet wymaga nadania numeru ID w zakresie od 001 do 255 i adresu IP z prawidłowym adresem podsieci i bramki (jeżeli jest). | | | TRYB=UST.
COFNIIJ
MLAN ID 001
Podglad Adresu MAC
Adres TCP/IP ▼ |
COFNIIJ
MLAN ID 001
Podglad Adresu MAC
Adres TCP/IP ▼ |
| Nacisnąć: | Po zakończeniu edycji ID nacisnąć przycisk ‹, aby przejść na dół listy do pozycji „Ustawienia TCP/IP”. | Na ekranie pojawi się: | TRYB=UST.
COFNIIJ
Podglad Adresu MAC
Adres TCP/IP
Ustawienia TCP/IP ▼ |
<table>
<thead>
<tr>
<th>Nacisnąć:</th>
<th>ENTER, aby zmienić adres IP, podsieci i bramki. Domyślnie suszarka VBD-150 ma ustawiony statyczny adres IP 192.168.000.001 z adresem podsieci 255.255.255.0 i domyślnej bramki 192.168.000.001. Za pomocą przycisków ▲▼ zmienić nastawę. Nacisnąć ENTER, aby przejść do następnej nastawy i zakończyć. Po adresie IP wyświetlena zostanie maska sieci i domyślna bramka, które można edytować w ten sam sposób.</th>
<th>Na ekranie pojawi się:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TRYB=UST. COFNIJ Statyczne IP ►[192.168.000.001]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nacisnąć:</th>
<th>ENTER przy wybranej pozycji „Statyczne IP”, co spowoduje przełączenie na DHCP. Aby zmienić statyczne IP, należy nacisnąć przycisk ▼, aby przejść do adresu IP.</th>
<th>Na ekranie pojawi się:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TRYB=UST. COFNIJ Wykorzystanie DHCP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nacisnąć:</th>
<th>Po zakończeniu przejść do pozycji „COFNIJ” i nacisnąć przycisk ENTER, aby wyjść z ustawień komunikacji.</th>
<th>Na ekranie pojawi się:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TRYB=UST. ►COFNIJ Statyczne IP [192.168.000.001]</td>
</tr>
</tbody>
</table>
Konserwacja

Opróżnianie i czyszczenie filtra powietrza / regulatora

Zadaniem filtra powietrza jest usuwanie wilgoci i zanieczyszczeń z doprowadzonego powietrza w celu ochrony podzespołów pneumatycznych suszarki. Z filtra powietrza należy okresowo usuwać wilgoć.

Nie wolno podłączać suszarki do źródła zaolejonego powietrza. Może to skutkować uszkodzeniem suszarki. Należy stosować tylko źródło powietrza czyste, suche i wolne od oleju.

Regulacja ciśnienia powietrza

Ciśnienie powietrza

Nie wolno podłączać suszarki do źródła zaolejonego powietrza. Może to skutkować uszkodzeniem suszarki. Należy stosować tylko źródło powietrza czyste, suche i wolne od oleju.

Wymiana filtra powietrza

Zadaniem filtra powietrza jest usuwanie wilgoci i zanieczyszczeń z powietrza pobieranego z otoczenia. Filtr powietrza należy okresowo wymieniać.

Odkręcić nakrętkę motylkową i zsunać obudowę filtra i wyjąć wkład. Wymienić na nowy wkład. Założyć obudowę i nakręcić nakrętkę motylkową.
Kalibracja ogniwa obciążnikowego

Kalibracja zera

UPEWNIĆ SIĘ że przewody powietrza komory próżniowej są podłączone.
UPEWNIĆ SIĘ że zasilanie powietrzem jest włączone.
UPEWNIĆ SIĘ że komora próżniowa i zbiornik odbiorczy są PUSTE.
UPEWNIĆ SIĘ że komora próżniowa i zbiornik odbiorczy zтсяają / spoczywają swobodnie na ogniach obciążnikowych.
UPEWNIĆ SIĘ że przeźroczysta osłona jest założona na dole komory próżniowej.

TAROWANIE WAGI

Procedura ta przebiega następująco:

Wskazania na ekranie ustawień ogniw obciążnikowych:

- VC LC — bieżący odczyt w funtach lub kilogramach ogniwa obciążnikowego komory próżniowej.
- „Kalibracja wagi” — patrz procedura kalibracji poniżej.
- LC1 (RH) — nieprzetworzone pomiary ogniwa obciążnikowego zbiornika odbiorczego.
- LC2 (VC) — nieprzetworzone pomiary ogniwa obciążnikowego komory próżniowej.

„Kalibracja wagi” — VC oznacza komorę próżniową, RH zbiornik odbiorczy.

| Nacisnąć: |
|--------------------|---|
| przycisk Ł, aby przejść do pozycji „Kalibracja wagi”. | Na ekranie pojawi się:
| | TRYB=UST. PODAJ HASŁO
| | 0_ _ _ _ |

| Na ekranie pojawi się:
| TRYB=UST.
| ► Ustawienia alarmow
| Ust. Dmuchawy
| Change Password ▼ |

| Nacisnąć: |
|--------------------|---|
| przycisk Ł, aby przejść do pozycji „Ust. Wagi”. | Na ekranie pojawi się:
| | UST. WAGI ▶COFNIJ
| | VC LC: + 0
| | RH LC: + 0
| | Jedno.:
| | Funty▼ |

„Kalibracja wagi” — VC oznacza komorę próżniową, RH zbiornik odbiorczy.

| Nacisnąć: |
|--------------------|---|
| przycisk Ł, aby przejść do pozycji „Kalibracja wagi”. | Na ekranie pojawi się:
| | UST. WAGI ▶COFNIJ
| | TAROWANIE ZB. PODC.
| | KAL. PELN.ZB. PODC.
| | TAROWANIE ZB. MAT.
| | KAL. PELN.ZB. MAT
| | Ust. fabryczne▼ |

| Na ekranie pojawi się:
| UST. WAGI ▶COFNIJ
| TAROWANIE ZB. PODC.
| KAL. PELN.ZB. PODC.
| TAROWANIE ZB. MAT.
| KAL. PELN.ZB. MAT
| Ust. fabryczne▼ |

| Nacisnąć: |
|--------------------|---|
| przycisk Ł, aby przejść do pozycji „Kalibracja wagi”. | Na ekranie pojawi się:
| | NIEUDANY KWALIBR.
| | MOZE ZAKLOCAC ,
| | PRACE WAGI
| | COFNIJ
| | Kontynuuje |

| Na ekranie pojawi się:
| NIEUDANY KWALIBR.
| MOZE ZAKLOCAC ,
| PRACE WAGI
| COFNIJ
| Kontynuuje |
Punkt ZERO ogniwa obciążnikowego jest ustawiony prawidłowo. Teraz można wykonać PEŁNĄ kalibrację wagi, jednak w większości przypadków NIE JEST TO KONIECZNE. W przypadku przesunięcia odczytów z ogniw obciążnikowych wskutek nieostrożnego postępowania z urządzeniem, przesunięciu ulega cały zakres od ZERA do PEŁNEGO. W czasie kalibracji ZERA resetowany jest pełny zakres ogniw, a więc korygowane są również odczyty PEŁNEJ wagi.

Pełna kalibracja wagi

Wykonując PEŁNĄ KALIBRACJĘ WAGI, NALEŻY PAMIĘTAĆ, aby dokładnie sprawdzić masę odważnika (w gramach lub funtach), który zostanie umieszczony w komorze. Umieścić odważnik w komorze.

Wpiszać DOKŁADNĄ wagę odważnika umieszczonego w komorze. Masa wyrażona jest w dziesiętnych częściach funta lub kilograma zależnie od jednostek wybranych w menu ustawień wagi. Odważnik powinien mieć masę około 35,0 funtów lub 16,0 kilogramów.

Po PEŁNEJ kalibracji wagi, jeżeli na ekranie wyświetla się komunikat („BAD CELL” [BŁĄD OGNIWA]), to wpisana waga odważnika nie zgadza się z odczytem, komora nie może swobodnie się poruszać LUB ogniwo obciążnikowe jest uszkodzone.

Jeżeli sumaryczna ilość materiału jest monitorowana, to zaleca się wykonywanie pełnej kalibracji regularnie (mniej więcej co sześć miesięcy).
<table>
<thead>
<tr>
<th>Nacisnąć:</th>
<th>aby zmieniać tryb na ikonę kół zębatych.</th>
<th>Na ekranie pojawi się:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter:</td>
<td>5-cyfrowe hasło. (Domyślnie hasło to 22222). Za pomocą przycisków ‣ ‣ można zmienić nastawę. Nacisnąć ENTER, aby przejść do następnej nastawy i zakończyć.</td>
<td>Tryb=Ust. Podaj hasło 0_ _ _ _</td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>Za pomocą przycisku ‣ przejść w dół do pozycji „KAL. PELN.ZB.PODC.”, aby wykonać pełną kalibrację wagi komory próżniowej.</td>
<td>Waga pelna Wpr. Wage: 0_._.Lb</td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>Przycisk ENTER, aby rozpocząć kalibrację PEŁNĄ. Nacisnąć przycisk ‣, aby przejść do pozycji „Kontynuuj”.</td>
<td>Dop.wsk dla tarowa. -=- Czekaj -=-</td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>Za pomocą przycisków ‣ ‣ należy zmienić wartość wagi. Między cyframi można przechodzić za pomocą przycisku ENTER. Przycisk ENTER, aby rozpocząć kalibrację PEŁNĄ.</td>
<td>Waga pelna Wpr. Wage: 0_._.Lb</td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>Przycisk ENTER, aby rozpocząć kalibrację PEŁNĄ. Nacisnąć przycisk ‣, aby przejść do pozycji „Kontynuuj”.</td>
<td>Waga pelna Wpr. Wage: 0_._.Lb</td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>Za pomocą przycisków ‣ ‣ należy zmienić wartość masy. Między cyframi można przechodzić za pomocą przycisku ENTER. Przycisk ENTER, aby rozpocząć kalibrację PEŁNĄ.</td>
<td>Dop.wsk dla tarowa. -=- Czekaj -=-</td>
</tr>
</tbody>
</table>
Weryfikacja działania czujnika temperatury i ciśnienia

Jeżeli konieczne jest potwierdzenie działania czujnika temperatury T1a (pomiar temperatury powietrza na wlocie do zbiornika grzejącego) i/lub czujnika ciśnienia (pomiar podciśnienia) suszarki VBD, to na tej stronie opisano procedurę takiej weryfikacji. Na początek warto wspomnieć, że urządzenie nie wymaga „idealnej” dokładności, aby działać prawidłowo. Zgodnie ze specyfikacją producenta dokładność czujnika temperatury, w który wyposażona jest suszarka VBD, wynosi 1/10 stopnia Celsjusza, a ze względu na swoją konstrukcję, czujnik albo działa, albo nie. Dokładność czujnika temperatury nie powinna nigdy ulec zmianie; nie powinien również wymagać kalibracji. Mając to na uwadze, wahania temperatury w zakresie +/- 3°C nie mają wpływu na proces suszenia większości materiałów. Nie oznacza to, że czujnik temperatury niekonsekwentnie mierzy temperaturę, ale że większość materiałów suszy się skutecznie w tym zakresie tolerancji. Dokładność czujnika ciśnienia używanego do pomiaru podciśnienia to ±2 mm Hg. Czuinika ciśnienia nie można skalibrować.

Weryfikacja działania czujnika temperatury T1a:

Czujnik temperatury T1a znajduje się mniej więcej na 1/3 wysokości zbiornika grzejącego na rurze wlotowej ciepłego powietrza. Wsunąć ręczny czujnik typu termopara lub czujnik rezystancyjny przez czerwony wąż silikonowy (w tym celu należy wykonać bardzo małe nacięcie żyletką) najbliżej czujnika temperatury T1A suszarki VBD, jak to możliwe.

Sprawdzić odczyt temperatury na górnym czerwonym ekranie suszarki VBD i porównać go z odczytem z ręcznego referencyjnego czujnika temperatury. Uwaga: Na zdjęciach przedstawiono temperaturę powietrza otoczenia.

Weryfikacja działania czujnika ciśnienia:

Czujnik ciśnienia bezwzględnego (pomiar podciśnienia) znajduje się w szafce układu elektronicznego suszarki VBD. Dokładność czujnika można sprawdzić na dwa sposoby. Metoda pierwsza: zmienić jednostkę wyświetlaną przez suszarkę VBD na milimetry słupa rtęci (domyślna) i porównać odczyt z ręcznego ciśnieniomierza umieszczonego obok urządzenia. Metoda druga: podłączyć ciśnieniomierz do zielonego przewodu sprężonego powietrza czujnika ciśnienia o średnicy ¼" (patrz strzałka na zdjęciu po prawej stronie). Zmierzyć ciśnienie atmosferyczne w przewodzie. Porównać wynik pomiaru z odczytem na wyświetlaczu suszarki VBD.
Procedura czyszczenia

Procedura czyszczenia polega na opróżnieniu zbiornika grzejącego lub komory próżniowej lub obu tych zbiorników jednocześnie. Poniżej opisano sposób wykonania tych procedur.

GORĄCE POWIERZCHNIE NA ZBIORNIKU GRZEJĄCYM:

Podobnie jak w innych suszarkach, urządzenie posiada GORĄCE POWIERZCHNIE, których nie wolno dotykać. Powierzchnia zbiornika może rozgrzać się do temperatury 350°F (180°C). Zazwyczaj powierzchnie te nie rozgrzewają się do niebezpiecznie wysokiej temperatury, ale należy unikać dotykania wszelkich gorących powierzchni.

Nie wykonywać procedury czyszczenia, jeżeli suszarka VBD-150 nie została uprzednio prawidłowo wyłączona.

Informacje na temat procedury wyłączania podano w rozdziale Uruchamianie i obsługa na stronie 29.

W czasie procedury czyszczenia nie wolno zbliżać dłoni ani narzędzi do żadnych zaworów. NIE SIĘGAĆ do wnętrza suszarki, aby usunąć z niej materiał.

Korzystanie ze zsuwni zsypowej zbiornika grzejącego

Uwaga: stosowanie zsuwni jest opcjonalne. Materiał można zsypać do komory próżniowej, a z niej do zbiornika odbiorczego i odprowadzić z VTA u podstawy suszarki.

<table>
<thead>
<tr>
<th>Opuścić kołnierz uszczelniający zbiornika odbiorczego, znajdujący się na spodzie komory próżniowej. Kołnierz uszczelniający jest zamocowany do podstawy komory próżniowej magnesami. Kołnierz uszczelniający należy odczepić poprzez pociągnięcie go w dół.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opuścić komorę próżniową poprzez przestawienie przełącznika podnoszenia komory próżniowej.</td>
</tr>
<tr>
<td>Podnieść blokadę suwaka po lewej stronie komory próżniowej. Przytrzymując blokadę suwaka w górze, wyciągnąć suwak komory próżniowej. Puścić blokadę suwaka, która spocznie na górnej części otworzonego suwaka.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Wysunąć komorę próżniową.</td>
</tr>
<tr>
<td>Założyć zsuwnię zsypową zbiornika grzejącego na siłowniki podnoszące komory próżniowej. Ustawić zsuwnię zsypową zbiornika grzejącego tak, aby materiał wysypał się z tyłu suszarki. Materiał należy zsuwać po zsuwni zsypowej do odpowiedniego pojemnika.</td>
</tr>
<tr>
<td>Ryzyko przygniecenia — nie zbliżać palców do zsuwni zsypowej zbiornika grzejącego, gdy przełącznik podnoszenia komory próżniowej jest w górze.</td>
</tr>
<tr>
<td>Podnieść lej do opróżniania zbiornika grzejącego poprzez przestawienie w górę przełącznika podnoszenia komory próżniowej.</td>
</tr>
</tbody>
</table>
Opróżnianie zbiornika grzejącego

<table>
<thead>
<tr>
<th>Nacisnąć:</th>
<th>Za pomocą przycisku ⬇️ przejść do pozycji „Czyszczenie”.</th>
<th>Na ekranie pojawi się:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>===WYBIERZ TRYB===</td>
<td>Praca ręczna</td>
</tr>
<tr>
<td></td>
<td>Start suszarki</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▶ Czyszczenie</td>
<td></td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>ENTER, aby otworzyć ekran „Czyszczenie". Na tym ekranie za pomocą opcji „Opr. Zb. Grzania” i przycisku zaworu spustowego zbiornika grzejącego (znajdującego się na górze z tyłu obszaru komory próżniowej) można opróżnić zbiornik grzejący.</td>
<td>Na ekranie pojawi się:</td>
</tr>
<tr>
<td></td>
<td>CZYSZCZENIE COFNIJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opr. Zb. Grzania</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oproznij wszystko</td>
<td></td>
</tr>
<tr>
<td>Aby skorzystać z tego menu, należy przejść do kolejnego kroku.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nacisnąć:</th>
<th>ENTER, aby wybrać opcję „Opr. Zb. Grzania”, aby rozpocząć czyszczenie.</th>
<th>Na ekranie pojawi się:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CZYSZCZENIE COFNIJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opr. Zb. Grzania</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wcisnij ENTER aby Wyjść</td>
<td></td>
</tr>
</tbody>
</table>

Aby skorzystać z przycisku zaworu spustowego zbiornika grzejącego, należy przejść do kolejnego kroku.

<table>
<thead>
<tr>
<th>Nacisnąć:</th>
<th>przycisk zaworu spustowego zbiornika grzejącego. Na ekranie „Czyszczenie” nacisnąć przycisk zaworu spustowego zbiornika grzejącego jeden raz, aby otworzyć zawór. Nacisnąć przycisk ponownie, aby zamknąć zawór.</th>
<th>Na ekranie pojawi się:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>„Exiting Clean Out”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Wychodzenie z procedury czyszczenia]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-=- Czekaj -=-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nacisnąć:</th>
<th>ENTER, gdy czyszczenie zostanie zakończone.</th>
<th>Na ekranie pojawi się:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>„Exiting Clean Out”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Wychodzenie z procedury czyszczenia]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-=- Czekaj -=-</td>
<td></td>
</tr>
</tbody>
</table>
Zbiornik grzewczy można teraz otworzyć i wyczyścić.

Opróżnianie komory próżniowej

Gdy komora próżniowa jest wysunięta, można otworzyć zawór spustowy komory próżniowej i zsypać materiał do odpowiedniego pojemnika w następujący sposób.

WAŻNE: W czasie procedury czyszczenia nie wolno zbliżać dłoni ani narzędzi do żadnych zaworów. NIE SIĘGAĆ do wnętrza suszarki, aby usunąć z niej materiał.

<table>
<thead>
<tr>
<th>Nacisnąć:</th>
<th>Za pomocą przycisku przejść do pozycji „Czyszczenie”.</th>
<th>Na ekranie pojawi się:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Za pomocą przycisku przejść do pozycji „Czyszczenie”.</td>
<td>Start suszarki</td>
</tr>
<tr>
<td></td>
<td>Za pomocą przycisku przejść do pozycji „Opr. Zb. Podcisn.”</td>
<td>Czyszczenie</td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>ENTER, aby otworzyć ekran „Czyszczenie”.</td>
<td>Praca ręczna</td>
</tr>
<tr>
<td></td>
<td>ENTER, aby opróżnić komorę próżniową.</td>
<td></td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>ENTER, gdy czyszczenie zostanie zakończone.</td>
<td></td>
</tr>
</tbody>
</table>

„Czyszczenie” / „Oproznij wszystko” — opcja „Oproznij wszystko” otwiera wszystkie zawory, umożliwiając swobodne przesypanie materiału przez całą suszarkę. Materiał w zbiorniku grzejącym przesypie się do komory próżniowej, a następnie do zbiornika odbiorczego. W tym trybie całą suszarkę można opróżnić z wykorzystaniem przenośników odbierających materiał na spodzie suszarki.

WAŻNE: W czasie procedury czyszczenia nie wolno zbliżać dłoni ani narzędzi do żadnych zaworów. NIE SIĘGAĆ do wnętrza suszarki, aby usunąć z niej materiał.
<table>
<thead>
<tr>
<th>Nacisnąć:</th>
<th>Za pomocą przycisku ↘ przejść do pozycji „Czyszczenie”.</th>
<th>Na ekranie pojawi się:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>===WYBIERZ TRYB====</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start suszarki</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▶ Czyszczenie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Praca reczna</td>
<td></td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>ENTER, aby otworzyć ekran „Czyszczenie”.</td>
<td>Na ekranie pojawi się:</td>
</tr>
<tr>
<td></td>
<td>CZYSZCZENIE COFNIJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opr. zb. Grzania</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opr. zb. Podcism.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oprzrnij wszystko</td>
<td></td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>Za pomocą przycisku ↘ przejść do pozycji „Oproznij wszystko”.</td>
<td>Na ekranie pojawi się:</td>
</tr>
<tr>
<td></td>
<td>CZYSZCZENIE COFNIJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opr. zb. Grzania</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opr. zb. Podcism.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oprzrnij wszystko</td>
<td></td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>ENTER, aby rozpocząć czyszczenie.</td>
<td>Na ekranie pojawi się:</td>
</tr>
<tr>
<td></td>
<td>CZYSZCZENIE ▶ COFNIJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oprzrn. całkowite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wcisnij ENTER aby Wyjśc</td>
<td></td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>ENTER, gdy czyszczenie zostanie zakończone.</td>
<td>Na ekranie pojawi się:</td>
</tr>
<tr>
<td></td>
<td>„Exiting Clean Out”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Wychodzenie z procedury czyszczenia]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>–=– Czekaj –=–</td>
<td></td>
</tr>
</tbody>
</table>
Serwisowanie / demontaż komory próżniowej

<table>
<thead>
<tr>
<th>Wyłączyć zasilanie główne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Wyłączyć zasilanie powietrzem suszarki.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Odlączyć przewody sprężonego powietrza.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Opuścić komorę próżniową poprzez przestawienie przełącznika podnoszenia komory próżniowej.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Opuścić kołnierz uszczelniający zbiornika odbiorczego, znajdujący się na spodzie komory próżniowej. Kołnierz uszczelniający jest zamocowany do podstawy komory próżniowej magnesami.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Podnieść blokadę suwaka po lewej stronie komory próżniowej. Przytrzymując blokadę suwaka w górze, wyciągnąć suwak komory próżniowej. Puścić blokadę suwaka, która spocznie na górnej części otworzonego suwaka.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Przy suwaku komory próżniowej wysuniętym na całą długość, komorę próżniową można wyczyścić lub wymontować. Komora próżniowa suszarki VBD-300 musi być podnoszona przez dwie osoby.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Montaż komory próżniowej

Zamknięcie suwaka

Przytrzymując blokadę suwaka w górze, wepchnąć suwak komory próżniowej do środka, aż przejdzie za płytę mocującą. Puścić blokadę suwaka i kontynuować wsuwanie suwaka komory próżniowej do środka.

Wepchnąć prowadnice suwaka i komorę próżniową do wnętrza suszarki, aż blokada suwaka opadnie na swoje miejsce przed suwakiem komory próżniowej, blokując suwak komory próżniowej w położeniu roboczym.

Podłączyć przewody sprężonego powietrza. Obrócić całkowicie pierścień blokujący w prawo, aby zamocować przewód sprężonego powietrza.

Włączyć zasilanie sprężonym powietrzem. Obrócić w lewo.
Podnieść kołnierz uszczelniający zbiornika odbiorczego, aż jego magnesy zostaną przyciągnięte do spodniej części komory próżniowej.

Podnieść komorę próżniową poprzez przestawienie przełącznika podnoszenia komory próżniowej w górę.

Ryzyko przygniecenia — nie zbliżać palców do uszczelnienia głównego komory próżniowej, gdy przełącznik podnoszenia komory próżniowej jest w górze.

Włączyć zasilanie główne.
Ustawienia wydruku

Menu „Ust. Wydruku” dostępne jest w menu „Ustawienia”. Z menu „Ust. Wydruku” można drukować dane do pliku na pamięci USB i zawiera ono następujące opcje:

„Rejestr” — aktywowany/dezaktywowany. Gdy rejestr jest aktywowy, zdarzenia zapisywane są w pliku rejestru.

„Przerwa” — sekundy (domyślnie 60 sek.). Częstotliwość automatycznego zapisywania informacji z suszarki VBD w pamięci USB.

„Zawartosc” — szczegółowy/standardowy. Szczegółowość danych zapisywanych w pliku rejestru.

„Drukuj wszystko” — drukuje rejestr alarmów, zdarzeń i parametrów do pliku na pamięci USB.

„Wydruk parametrow” — drukuje pełną listę parametrów i ich wartości oraz inne informacje do pliku na pamięci USB.

„Wydruk zdarzen” — zapisywane są linie stanu urządzenia zgodnie ze zdefiniowaną częstotliwością oraz informacje o zdarzeniach mechanicznych.

„Wydruk alarmow” — drukuje informacje o wszystkich alarmach aktywowanych od czasu ostatniego zrzutu alarmów na pamięć USB.

„Wyczysc zdarzenia” — usuwa wszystkie zdarzenia z rejestru zapisanego w pamięci.

„Wyczysc alarmy” — usuwa wszystkie alarmy z rejestru zapisanego w pamięci.

„Copy Log File” [Kopiuj plik rejestru] — kopiuje nieprzetworzony plik rejestru na pamięć USB na potrzeby analizy przez technika firmy Maguire.

Drukowanie rejestru zdarzeń, parametrów lub alarmu

Wydrukowanie rejestru alarmów, parametrów lub zdarzeń wymaga uprzedniego podłączenia pamięci Flash USB do suszarki VBD-150.

<table>
<thead>
<tr>
<th>Nacisnąć:</th>
<th>aby zmieniać tryb wyboru na tryb konfiguracji (ikona kół zębatych).</th>
<th>Na ekranie pojawia się: TRYB=UST. PODAJ HASLO 0_ _ _ _</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter:</td>
<td>5-cyfrowe hasło. (Domysłne hasło to 22222). Za pomocą przycisków ▲, ▼ można zmienić nastawę. Nacisnąć ENTER, aby przejść do następnej nastawy i zakończyć.</td>
<td></td>
</tr>
<tr>
<td>Na ekranie pojawia się: TRYB=UST. Ustawienia alarmow ▲ „Ust.Aut.zalaczania” ▼ Ust. Dmuchawy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na ekranie pojawia się: UST. WYDRUKU COFNIJ ▲ Rejestr: WŁACZ Przerwa: 60s Zawartosc: ▼</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>Za pomocą przycisku ▲ przejść do jednej z opcji drukowania.</td>
<td></td>
</tr>
<tr>
<td>Na ekranie pojawia się: UST. WYDRUKU COFNIJ ▲ Drukuj wszystko ▼ Wydruk parametrow Wydruk zdarzen ▼</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nacisnąć:</td>
<td>ENTER, aby wydrukować wybraną pozycję.</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pliki zostaną utworzone w katalogu nadrzędnym pamięci Flash.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VBDALARM.LOG — rejestr alarmów</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VBDEVENT.LOG — rejestr zdarzeń</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VBDPARAM.TXT — zestawienie parametrów</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Na wyświetlacz u pojawia się jedna z następujących opcji:</th>
</tr>
</thead>
<tbody>
<tr>
<td>WYDRUK REJ. ZDARZEN —=- CZEKAJ -=-</td>
</tr>
<tr>
<td>WYDRUK SPISU ALARM. —=- CZEKAJ -=-</td>
</tr>
<tr>
<td>WYDRUK PARAMETROW —=- CZEKAJ -=-</td>
</tr>
</tbody>
</table>
Interpretabowanie rejestru zdarzeń

Poniżej podano opis kolumn rejestru.

### Kolumna	Opis
1 | Dzień i godzina wygenerowania rejestru (data jest zapisana w suszarce).
2 | Aktualny tryb pracy suszarki
3 | Aktualna nastawa temperatury powietrza wlotowego zbiornika grzejącego
4 | Aktualna rzeczywista temperatura w zbiorniku grzejącym
5 | Aktualny cykl roboczy grzałki wyrażony w procentach
6 | Aktualna temperatura powietrza na wylocie zbiornika grzejącego
7 | Aktualna temperatura na wylocie materiału (opcjonalny czujnik temperatury)
8 | Aktualny czas cyklu suszenia próżniowego i nastawa czasu
9 | Aktualne ciśnienie w komorze próżniowej
10 | Masa materiału w komorze próżniowej
11 | Masa materiału w zbiorniku odbiorczym
12 | Aktualna wydajność suszarki
13 | Aktualny odczyt licznika

Przykładowy rejestr zdarzeń suszarki VBD:

VBD® — suszarka próżniowa

Maguire Products, Inc.

VBD Event Log

MODEL: 150

CPU Firmware: N1006A

I/O Firmware: N1006A

Serial#: 123456-78

10-08-2014 08:31:06

70
Przykładowy wydruk parametrów suszarki VBD-150:

<table>
<thead>
<tr>
<th>INDEX</th>
<th>NAME</th>
<th>ABBR</th>
<th>RAM</th>
<th>DFT</th>
<th>LO LIMIT</th>
<th>HI LIMIT</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Blower Delay Time</td>
<td>BDT</td>
<td>00402</td>
<td>00402</td>
<td>00000</td>
<td>99999</td>
<td>Second</td>
</tr>
<tr>
<td>B2</td>
<td>VFD Low Limit</td>
<td>BLF</td>
<td>00025</td>
<td>00025</td>
<td>00025</td>
<td>00060</td>
<td>Freq</td>
</tr>
<tr>
<td>B3</td>
<td>VFD High Limit</td>
<td>BHF</td>
<td>00060</td>
<td>00060</td>
<td>00050</td>
<td>00070</td>
<td>Freq</td>
</tr>
<tr>
<td>B4</td>
<td>VFD Drive</td>
<td>BDF</td>
<td>00060</td>
<td>00060</td>
<td>00000</td>
<td>65535</td>
<td>Freq</td>
</tr>
<tr>
<td>B5</td>
<td>VFD Zero Level</td>
<td>BZL</td>
<td>00045</td>
<td>00045</td>
<td>00000</td>
<td>00100</td>
<td>Percent</td>
</tr>
<tr>
<td>B6</td>
<td>VFD Level Adjustment</td>
<td>BLA</td>
<td>00025</td>
<td>00025</td>
<td>00025</td>
<td>00060</td>
<td>Freq</td>
</tr>
<tr>
<td>B7</td>
<td>VFD Heat Throttle</td>
<td>BHT</td>
<td>00100</td>
<td>00100</td>
<td>00000</td>
<td>65535</td>
<td>Percent</td>
</tr>
</tbody>
</table>

Dispensing:

<table>
<thead>
<tr>
<th>INDEX</th>
<th>NAME</th>
<th>ABBR</th>
<th>RAM</th>
<th>DFT</th>
<th>LO LIMIT</th>
<th>HI LIMIT</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Vac. Cham. Hi Level</td>
<td>VCH</td>
<td>00013</td>
<td>00013</td>
<td>00000</td>
<td>00560</td>
<td>Weight</td>
</tr>
<tr>
<td>D2</td>
<td>Vac. Cham. Low Level</td>
<td>VCL</td>
<td>00002</td>
<td>00002</td>
<td>00000</td>
<td>00010</td>
<td>Weight</td>
</tr>
<tr>
<td>D3</td>
<td>Ret. Hop. Hi Level</td>
<td>RHH</td>
<td>00015</td>
<td>00015</td>
<td>00000</td>
<td>00728</td>
<td>Weight</td>
</tr>
<tr>
<td>D4</td>
<td>Ret. Hop. Low Level</td>
<td>RHL</td>
<td>00002</td>
<td>00002</td>
<td>00000</td>
<td>00010</td>
<td>Weight</td>
</tr>
<tr>
<td>D5</td>
<td>Bulk Density</td>
<td>BLK</td>
<td>00560</td>
<td>00560</td>
<td>00000</td>
<td>65535</td>
<td>Weight</td>
</tr>
<tr>
<td>D6</td>
<td>Vac.Cham. Fill Rate</td>
<td>VFR</td>
<td>01050</td>
<td>01050</td>
<td>00000</td>
<td>02500</td>
<td>Gram/Sec</td>
</tr>
<tr>
<td>D7</td>
<td>Vac.Cham. Dump Rate</td>
<td>VDR</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>02000</td>
<td>Gram/Sec</td>
</tr>
<tr>
<td>D8</td>
<td>Chamber Fill Time</td>
<td>VFT</td>
<td>00035</td>
<td>00035</td>
<td>00000</td>
<td>99999</td>
<td>Second</td>
</tr>
<tr>
<td>D9</td>
<td>Chamber Dump Time</td>
<td>VDT</td>
<td>00060</td>
<td>00060</td>
<td>00000</td>
<td>99999</td>
<td>Second</td>
</tr>
<tr>
<td>D10</td>
<td>Fill Lag Time</td>
<td>FLA</td>
<td>00175</td>
<td>00175</td>
<td>00000</td>
<td>00500</td>
<td>Time</td>
</tr>
<tr>
<td>D11</td>
<td>Dump Lag Time</td>
<td>DLL</td>
<td>00100</td>
<td>00100</td>
<td>00000</td>
<td>00500</td>
<td>Time</td>
</tr>
<tr>
<td>D12</td>
<td>Vacuum Gate Delay</td>
<td>VGD</td>
<td>00303</td>
<td>00303</td>
<td>00000</td>
<td>65535</td>
<td>Second</td>
</tr>
<tr>
<td>D13</td>
<td>Chamber Fill Adjust</td>
<td>VFA</td>
<td>00405</td>
<td>00405</td>
<td>00000</td>
<td>65535</td>
<td>Cnt/Pct</td>
</tr>
<tr>
<td>D14</td>
<td>HH Dump Delay</td>
<td>HHD</td>
<td>00004</td>
<td>00004</td>
<td>00000</td>
<td>65535</td>
<td>Second</td>
</tr>
<tr>
<td>D15</td>
<td>Vac. Dump Threshold</td>
<td>VCT</td>
<td>00050</td>
<td>00050</td>
<td>00000</td>
<td>65535</td>
<td>Gram/Sec</td>
</tr>
<tr>
<td>D16</td>
<td>Chamber Dump Retries</td>
<td>CDR</td>
<td>05003</td>
<td>05003</td>
<td>00000</td>
<td>10099</td>
<td>Perc/Ret</td>
</tr>
<tr>
<td>D17</td>
<td>Residence Alarm</td>
<td>RAL</td>
<td>02120</td>
<td>02120</td>
<td>00000</td>
<td>29999</td>
<td>Wt/Min</td>
</tr>
<tr>
<td>D18</td>
<td>Batch Size</td>
<td>BCH</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>65535</td>
<td>Weight</td>
</tr>
<tr>
<td>D19</td>
<td>Loader Trip Point</td>
<td>LTD</td>
<td>00006</td>
<td>00006</td>
<td>00000</td>
<td>00250</td>
<td>Weight</td>
</tr>
<tr>
<td>D20</td>
<td>Ldr. Thruput Cutoff</td>
<td>LTC</td>
<td>00002</td>
<td>00002</td>
<td>00000</td>
<td>65536</td>
<td>Wt/Min</td>
</tr>
<tr>
<td>D21</td>
<td>Heat Hopper Volume</td>
<td>HHV</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>00000</td>
<td>Volume</td>
</tr>
</tbody>
</table>

Heater:

<table>
<thead>
<tr>
<th>INDEX</th>
<th>NAME</th>
<th>ABBR</th>
<th>RAM</th>
<th>DFT</th>
<th>LO LIMIT</th>
<th>HI LIMIT</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1-1</td>
<td>Preheat Temperature</td>
<td>PTS</td>
<td>00150</td>
<td>00150</td>
<td>00074</td>
<td>00375</td>
<td>Degree</td>
</tr>
<tr>
<td>H1-2</td>
<td>Preheat Time</td>
<td>PHT</td>
<td>00035</td>
<td>00035</td>
<td>00001</td>
<td>00999</td>
<td>Minute</td>
</tr>
<tr>
<td>H1-3</td>
<td>Preheat Temp. Delta</td>
<td>PTD</td>
<td>00030</td>
<td>00030</td>
<td>00000</td>
<td>65535</td>
<td>Degree</td>
</tr>
<tr>
<td>H1-4</td>
<td>Heat1 Temp Set-Point</td>
<td>PTS</td>
<td>00150</td>
<td>00150</td>
<td>00074</td>
<td>00375</td>
<td>Degree</td>
</tr>
<tr>
<td>H1-5</td>
<td>Heat1 Proportional</td>
<td>PT1</td>
<td>00040</td>
<td>00040</td>
<td>00000</td>
<td>00100</td>
<td>Term</td>
</tr>
<tr>
<td>H1-6</td>
<td>Heat1 Derivative</td>
<td>DT1</td>
<td>00015</td>
<td>00015</td>
<td>00000</td>
<td>00100</td>
<td>Term</td>
</tr>
<tr>
<td>H1-7</td>
<td>Heat1 Update Time</td>
<td>UT1</td>
<td>00415</td>
<td>00415</td>
<td>00000</td>
<td>65535</td>
<td>Sec/Sec</td>
</tr>
<tr>
<td>H1-8</td>
<td>Heat1 OverTarg Alarm</td>
<td>OT1</td>
<td>06006</td>
<td>06006</td>
<td>00000</td>
<td>65535</td>
<td>Sec/Deg</td>
</tr>
<tr>
<td>H1-9</td>
<td>Heat1 No Heat Alarm</td>
<td>NH1</td>
<td>01200</td>
<td>01200</td>
<td>00000</td>
<td>65535</td>
<td>Second</td>
</tr>
<tr>
<td>H1-10</td>
<td>Heat1 Set-Point Off.</td>
<td>S01</td>
<td>03002</td>
<td>03002</td>
<td>00000</td>
<td>65535</td>
<td>Sec/Deg</td>
</tr>
<tr>
<td>H1-11</td>
<td>Heat1 Max. Percent</td>
<td>MP1</td>
<td>01000</td>
<td>01000</td>
<td>00000</td>
<td>00100</td>
<td>Percent</td>
</tr>
<tr>
<td>H1-13</td>
<td>Max Temp Set-Point</td>
<td>MAX</td>
<td>00356</td>
<td>00356</td>
<td>00074</td>
<td>00375</td>
<td>Degree</td>
</tr>
<tr>
<td>H1-14</td>
<td>Energy Saver Mode</td>
<td>ESM</td>
<td>00125</td>
<td>00125</td>
<td>00000</td>
<td>65535</td>
<td>Degree</td>
</tr>
<tr>
<td>H1-15</td>
<td>Energy Saver Time</td>
<td>EST</td>
<td>00030</td>
<td>00030</td>
<td>00000</td>
<td>65535</td>
<td>Minute</td>
</tr>
<tr>
<td>H1-16</td>
<td>Ramp Settings</td>
<td>RMP</td>
<td>52036</td>
<td>52036</td>
<td>00000</td>
<td>99999</td>
<td>Min/Sec</td>
</tr>
<tr>
<td>H1-17</td>
<td>Cool-Down Temp.</td>
<td>CTM</td>
<td>00120</td>
<td>00120</td>
<td>00032</td>
<td>00300</td>
<td>Degree</td>
</tr>
<tr>
<td>H1-18</td>
<td>Cool-Down Timer</td>
<td>CTR</td>
<td>00030</td>
<td>00030</td>
<td>00000</td>
<td>65535</td>
<td>Minutes</td>
</tr>
</tbody>
</table>

Load Cell:

<table>
<thead>
<tr>
<th>INDEX</th>
<th>NAME</th>
<th>ABBR</th>
<th>RAM</th>
<th>DFT</th>
<th>LO LIMIT</th>
<th>HI LIMIT</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Loadcell Stable Wt.</td>
<td>KDF</td>
<td>00200</td>
<td>00200</td>
<td>00000</td>
<td>65535</td>
<td>Number</td>
</tr>
<tr>
<td>L2</td>
<td>Loadcell Stable Time</td>
<td>LST</td>
<td>00100</td>
<td>00100</td>
<td>00000</td>
<td>65535</td>
<td>Millsec</td>
</tr>
</tbody>
</table>
L3 Loadcell Zero LCZ 01000 01000 00000 65535 Number
L4 Weight Settle Time WST 00805 00805 00002 65536 Second
L5 Loadcell 1 Zero LZ1 00000 00000 00000 65535 Number
L6 Loadcell 2 Zero LZ2 00000 00000 00000 65535 Number

Vacuum:
V1 Vacuum Time Setting VTS 05020 05020 00001 65535 Minute
V2 Vac. Pressure Low VPL 00080 00080 00000 65535 Number
V3 Vac. Pressure Delta VPD 05020 05020 00000 65535 Number
V4 Vac. Shutdown Offset VSO 00060 00060 00000 65535 Second
V5 Low Vacuum Timeout LVT 00120 00120 00000 65535 Second
V6 No Vacuum Timeout NVT 00345 00345 00000 65535 Cnt/Sec
V7 Cham. Purge Timer VPT 00010 00010 00000 65535 Second
V8 Cham. Purge Interval VPI 20240 20240 00000 65535 Sec/Sec
V9 Atmospheric Pressure ATM 00760 00760 00000 00999 mmHg

System:
S1 Event Logging Time ELT 00060 00060 00001 65535 Second

Alarm Flags:
Material Shortage Alarm Warn
Material Ready Off
Material Temp Off
HH Level Alarm Off
Residence Off
Throughput Alarm On
Dump Retry On

Display Flags:
Auto Shutdown Off
Batch Mode Off
Cycle Info On
Display Temp.
Fill Time On
Dump Time On
I/O Status On
Preheat Temp Off
Preheat Temp. On
Residence Time Off
Screen Timeout Off
Vacuum Time On

Heat Settings:
Temperature Unit Fahrenheit
Preheat Mode Timed
Energy Saver Off
Ramp Off

Misc. Settings:
Auto-Fill Adjust Off
HH Level Sensor Off
Loader 1 Off
Loader 2 Off
Loader 2 Mode Thruput
Purge Chamber On

Admin. Settings:
Blower VFD
T4 On
T5 On

LOADCELL CALIBRATION
NAME ZERO DELTA FULL LAST ZERO LAST FULL
RH LC: 3308245 1588575 15422 Tue 08/16/2016 11:33 Thu 01/01/1970 00:00
VC LC: 3365199 1408275 16147 Tue 08/16/2016 11:33 Thu 01/01/1970 00:00
Przykładowy wydruk parametrów suszarki VBD-300:

VBD-300 Parameters

Tue 09/06/2016 14:25
CPU Firmware: P0812A
I/O Firmware: P0812A
CPU Bootloader: 1.03
I/O Bootloader: 1.03
Serial#: 000000-00
MAC Address: 00:1C:1A:00:4B:0F

INDEX NAME ABBR RAM DFT LO LIMIT HI LIMIT UNITS
Blower:
B1 Blower Delay Time BDT 00402 00402 00000 99999 Second
B2 VFD Low Limit BLF 00025 00025 00025 00060 Freq
B3 VFD High Limit BHF 00060 00060 00050 00070 Freq
B4 VFD Drive BDF 00060 00060 00000 65535 Freq
B5 VFD Zero Level BZL 00045 00045 00000 00100 Percent
B6 VFD Level Adjustment BLA 00025 00025 00025 00060 Freq
B7 VFD Heat Throttle BHT 00100 00100 00000 65535 Percent

Dispensing:
D1 Vac. Cham. Hi Level VCH 00031 00031 00000 01120 Weight
D2 Vac. Cham. Low Level VCL 00002 00002 00000 00020 Weight
D3 Ret. Hop. Hi Level RHH 00038 00038 00000 01344 Weight
D4 Ret. Hop. Low Level RHL 00004 00004 00000 00020 Weight
D5 Bulk Density BLK 00560 00560 00000 65535 Weight
D6 Vac.Cham. Fill Rate VFR 03000 03000 00000 04500 Gram/Sec
D7 Vac.Cham. Dump Rate VDR 00000 00000 00000 04000 Gram/Sec
D8 Chamber Fill Time VFT 00035 00035 00000 99999 Second
D9 Chamber Dump Time VDT 00060 00060 00000 99999 Second
D10 Fill Lag Time FLA 00175 00175 00000 00500 Time
D11 Dump Lag Time DLA 00100 00100 00000 00500 Time
D12 Vacuum Gate Delay VGD 0303 0303 00000 65535 Second
D13 Chamber Fill Adjust VFA 00414 00414 00000 65535 Cnt/Pct
D14 HH Dump Delay HDD 00004 00004 00000 65535 Second
D15 Vac. Dump Threshold VCT 00115 00115 00000 65535 Gram/Sec
D16 Chamber Dump Retries CDR 05003 05003 00000 10099 Perc/Ret
D17 Residence Alarm RAL 02120 02120 00000 29999 Wt/Min
D18 Batch Size BCH 00000 00000 00000 65535 Weight
D19 Loader Trip Point LTP 00013 00013 00000 00250 Weight
D20 Ldr. Thruput Cutoff LTC 00002 00002 00000 65535 Wt/Min
D21 Chamber Dump Time VDT 00060 00060 00000 00060 Volume

Heater:
H1-1 Preheat Temperature PTS 00150 00150 00000 00375 Degree
H1-2 Preheat Time PHT 00035 00035 00001 00099 Minute
H1-3 Preheat Targ. Delta PDT 00300 00300 00000 65535 Degree
H1-4 Heat1 Temp Set-Point RTS 00150 00150 00000 00375 Degree
H1-5 Heat1 Proportional PT1 00040 00040 00000 00100 Term
H1-6 Heat1 Derivative DT1 00015 00015 00000 00100 Term
H1-7 Heat1 Update Time UT1 00415 00415 00000 65535 Sec/Sec
H1-8 Heat1 OverTarg Alarm OT1 06006 06006 00000 65535 Sec/Deg
H1-9 Heat1 No Heat Alarm NH1 00120 00120 00000 65535 Second
H1-10 Heat1 Set-Point Off. SO1 03002 03002 00000 65535 Sec/Deg
H1-11 Heat1 Max. Percent MP1 00100 00100 00000 00100 Percent
H1-12 Max Temp Set-Point MAX 00356 00356 00000 00375 Degree
H1-13 Energy Saver Mode ESM 00125 00125 00000 65535 Degree
H1-14 Energy Saver Time EST 00030 00030 00000 65535 Minute
H1-16 Ramp Settings RMP 52036 52036 00000 99999 Min/Deg
H1-17 Cool-Down Temp. CTM 00120 00120 00000 00300 Degree
H1-18 Cool-Down Timer CTR 00030 00030 00000 65535 Minutes

Load Cell:
L1 Loadcell Stable Wt. KDF 00200 00006 00000 65535 Number
L2 Loadcell Stable Time LST 00100 00100 00000 65535 Millisec
L3 Loadcell Zero LCZ 01000 01000 00000 65535 Number
L4 Weight Settle Time WST 00805 00805 00000 65535 Second
L5 Loadcell 1 Zero LZ1 00000 00000 00000 65535 Number
L6 Loadcell 2 Zero LZ2 00000 00000 00000 65535 Number
Vacuum:

V1 Vacuum Time Setting VTS 05020 05020 00001 65535 Minute
V2 Vac. Pressure Low VPL 00080 00080 00000 65535 Number
V3 Vac. Pressure Delta VPD 05020 05020 00000 65535 Number
V4 Vac. Shutdown Offset VSO 00060 00060 00000 65535 Second
V5 Low Vacuum Timeout LVT 00120 00120 00000 65535 Second
V6 No Vacuum Timeout NVT 00345 00345 00000 65535 Cnt/Sec
V7 Cham. Purge Timer VPT 00010 00010 00000 65535 Second
V8 Cham. Purge Interval VPI 20240 20240 00000 65535 Sec/Sec
V9 Atmospheric Pressure ATM 00760 00760 00000 00999 mmHg

System:

S1 Event Logging Time ELT 00060 00060 00001 65535 Second

Alarm Flags:

Material Shortage Alarm Warn
Material Ready Off
Material Temp Off
HH Level Alarm Off
Residence Off
Throughput Alarm On
Dump Retry On

Display Flags:

Auto Shutdown Off
Batch Mode Off
Cycle Info On
Display Temp.
Fill Time On
Dump Time On
I/O Status On
Preheat Temp Off
Preheat Temp. On
Residence Time Off
Screen Timeout Off
Vacuum Time On

Heat Settings:

Temperature Unit Fahrenheit
Preheat Mode Timed
Energy Saver Off
Ramp Off

Misc. Settings:

Auto-Fill Adjust Off
HH Level Sensor Off
Loader 1 Off
Loader 2 Off
Loader 2 Mode Thruput
Purge Chamber On

Admin. Settings:

Blower VFD
T4 On
T5 On

LOADCELL CALIBRATION

<table>
<thead>
<tr>
<th>NAME</th>
<th>ZERO</th>
<th>DELTA</th>
<th>FULL</th>
<th>LAST ZERO</th>
<th>LAST FULL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RH LC: 3308245 1588575</td>
<td>15422</td>
<td>Tue 08/16/2016 11:33</td>
<td>Thu 01/01/1970 00:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT LC: 3365199 1408275</td>
<td>16147</td>
<td>Tue 08/16/2016 11:33</td>
<td>Thu 01/01/1970 00:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alarma — przyczyny i rozwiązania

Zazwyczaj problemy sygnalizowane są poprzez wyświetlenie alarmu na wyświetlaczu sterownika suszarki i odtworzenie dźwięku alarmowego oraz włączenie ostrzegawczego światła obrotowego. Poniższa tabela diagnostyczna zawiera informacje umożliwiające znalezienie przyczyn i rozwiązań dla stanów alarmowych.

Komunikat alarmu:

Problem: Dmuchawa nie działa.

Stycznik przekaźnika przeciążenia silnika zadziałał. Patrz schemat połączeń na stronie 84, gdzie wskazano lokalizację stycznika silnika dmuchawy. Pozycja nr 3 przekaźnika przeciążenia na schemacie połączeń. Ten alarm powoduje rozpoczęcie procedury wyłączenia suszarki.

Rozwiązanie: Reset stycznika. Sprawdzić, czy wał silnika dmuchawy nie jest zablokowany. Sprawdzić napięcie sieciowe doprowadzone do urządzenia; upewnić się, że napięcie nie jest za niskie, co może wiązać się z większym natężeniem prądu. Sprawdzić, czy zasilacz nie utracił fazy.

Problem: Brak nagrzewania lub za słabe nagrzewanie zgodnie z pomiarem czujnika temperatury na wlocie zbiornika grzejącego.

Ten alarm jest zgłaszany na podstawie parametru NH1. Parametr NH1 to maksymalny czas w sekundach, po którym rozpoczyna się cykl nagrzewania, w którym spełniony musi być jeden z poniższych dwóch warunków: Temperatura musi wzrosnąć o 20° lub temperatura musi przybliżyć o co najmniej 20 procent do temperatury docelowej. Jeżeli żaden z tych warunków nie zostanie spełniony, włączony zostanie alarm „BRAK CIEPLA”. Taka sytuacja oznacza ursorkę grzałki lub brak przepływu powietrza z dmuchawy. Ten parametr i aktywowany przez niego alarm stanowi zabezpieczenie grzałki przed przepaleniem w przypadku usterki dmuchawy lub zablokowania drogi przepływu powietrza.

Rozwiązanie: Sprawdzić przepływ powietrza z dmuchawy. Sprawdzić, czy wlot dmuchawy nie jest zastawiony, sprawdzić, czy kanał powietrza 2” łączący dmuchawę z grzałką nie jest odłączony, zapchany lub przedziurawiony. Sprawdzić, czy kanał powietrza 2” łączący górną część grzałki z wlotem zbiornika grzejącego nie jest odłączony, zapchany lub przedziurawiony. Sprawdzić ciągalność przewodów grzałki. Patrz schemat połączeń na stronie 84. Jeżeli w grzałce suszarki wystąpiło zwarcie, to spowoduje ono zadziałanie wyłącznika automatycznego lub przepalenie bezpiecznika, przez które zasilana jest suszarka VBD-150.

Problem: Temperatura na wlocie powietrza do zbiornika grzejącego przekroczyła wartość nastawy o zbyt dużą wartość.

Jeżeli temperatura na wlocie powietrza do zbiornika grzejącego (czujnik T1a) przekroczy o 20°F nastawę (parametr PTS), to zgłoszony zostanie ten alarm krytyczny.

Rozwiązanie: Należy skontaktować się z działem pomocy technicznej firmy Maguire.
Problem: Temperatura na wlocie powietrza do zbiornika grzejącego przekroczyła wartość nastawy.

Jeżeli temperatura na wlocie powietrza do zbiornika grzejącego (czuJNIk T1a) zostanie przekroczona o liczbę stopni określonych w parametrze OT1 (domyślnie 6° F lub 6° C) i przez czas dłuższy niż liczba sekund określonych w parametrze OT1, to alarm zostanie zgłoszony, a moc grzałki zostanie zmniejszona o 20%. Alarm włączy się, ale urządzenie będzie nadal pracować. Więcej informacji, patrz parametr OT1.

Rozwiązanie: Zazwyczaj nie trzeba podejmować kroków naprawczych, ponieważ suszarka informuje tylko o regulacji temperatury. Jeżeli alarm powtarza się, należy skontaktować się z działem pomocy technicznej firmy Maguire.

Problem: Suszarka nie uzyskała odpowiedniego podciśnienia w trzech próbach.

Rozwiązanie: Jeżeli suszarka ciągle zgłasza ten alarm, należy sprawdzić: przyłącze sprężonego powietrza i ciśnienie (regulator suszarki powinien wskazywać 85 psi). Sprawdzić, czy uszczelnienia nad i pod komorą próżniową nie są zanieczyszczone.

Rozwiązanie: Należy skontaktować się z działem pomocy technicznej firmy Maguire, aby zamówić zamienny czujnik temperatury.

Problem: Maksymalny czas napełniania (parametr VFT) upłynął przed uzyskaniem docelowej masy materiału (parametr VTH).

Ten alarm jest zgłaszany, gdy spełniony zostanie warunek parametru VFT (czas napełniania zbiornika) przed warunkiem VCH (wysoki poziom w komorze próżniowej), co sygnalizuje brak materiału w zbiorniku grzejącym lub zablokowanie zaworu. Konsekwencje tego alarmu można ustawić w ustawieniach alarmu braku materiału. Patrz strona 36.

Rozwiązanie: Sprawdzić zasilanie materiałem. Sprawdzić zawór napełniający komory próżniowej znajdujący się u podstawy zbiornika grzejącego.
Problem: Czujnik ciśnienia powietrza wykrył ciśnienie niższe niż 50 psi.
Rozwiązanie:
Sprawdzić zawór blokujący znajdujący się z przodu, na dole, po lewej stronie suszarki VBD-150. Upewnić się, że zawór jest otwarty. Sprawdzić ciśnienie zasilania sprężonego powietrza.

Problem: Przełącznik termiczny bezpieczeństwa otworzył się wskutek przegrzania.
Rozwiązanie:

Problem: Brak komory próżniowej.
Rozwiązanie:
Jeżeli ogniwo obciążnikowe komory próżniowej zmierzy wagę o 4,5 funta (2000 gram) poniżej zera w czasie pracy w trybie AUTO, to zgłoszony zostanie ten alarm i suszarka zatrzyma pracę (alarm krytyczny). Ten alarm zazwyczaj spowodowany jest brakiem komory próżniowej, gdy w komorze znajdował się materiał.

Problem: Nie ma zbiornika odbiorczego.
Rozwiązanie:
Jeżeli ogniwo obciążnikowe zbiornika odbiorczego zmierzy wagę o 6,6 funta (3000 gramów) dla suszarki VBD-150 lub o 11 funtów (5000 gramów) poniżej zera w czasie pracy w trybie AUTO, to zgłoszony zostanie ten alarm i suszarka zatrzyma pracę (alarm krytyczny). Ten alarm zazwyczaj spowodowany jest brakiem zbiornika odbiorczego, gdy w zbiorniku znajdował się materiał.

VBD® — suszarka próżniowa®

Maguire Products, Inc.

Wer. 10 marzec 2017 r.

77
Problem: Przekroczone wydajność suszarki.
Jest to opcjonalny, domyślnie aktywowany alarm (w menu alarmów). Alarm jest zgłaszany, gdy osiągnięty zostanie niski poziom w zbiorniku odbiorczym przed upłynięciem czasu cyklu suszenia próżniowego. Oznacza to, że materiał jest pobierany szybciej, niż jest suszony. Ten alarm nie jest alarmem krytycznym, a suszarka kontynuuje pracę.

Rozwiązanie: Alarm spowodowany jest za szybkim odbiorem materiału.

Problem: Suszarka nie wytworzyła podciśnienia o wartości zadanej w parametrze VPL.
Suszarka próbowała uzyskać podciśnienie na zadanym poziomie w ciągu 120 sekund (domyślna wartość w parametrze LVT).

Problem: Materiał przetrzymywany jest w zbiorniku odbiorczym przez zbyt długi czas.
Ten alarm jest zgłaszany na podstawie parametru RAL. Po aktywowaniu, alarm czasu przebywania zostanie zgłoszony, jeżeli ze zbiornika odbiorczego nie zostanie odebrana wystarczająca ilość materiału w czasie określonym w parametrze RAL. Więcej informacji, patrz parametr RAL na stronie 42.

Rozwiązanie: Aby zapobiec zgłaszaniu tego alarmu: zmniejszyć masę napełniania albo włączyć regulację masy napełniania (menu ustawień materiału).

Wsad został ukończony
Ten alarm zgłaszany jest na końcu pracy w trybie wsadu, przy czym koniec pracy definiowany jest jako czas, w którym zbiornik odbiorczy zostanie opróżniony do poziomu ustalonego w parametrze HHL, po ostatnim opróżnieniu komory próżniowej w czasie tego cyklu w trybie wsadu.

Wyłączenie materiału
Ten alarm jest zgłaszany, jeżeli alarm braku materiału jest ustawiony na opcję „WYŁACZENIE” i suszarka ustali, że zbiornik grzejący został całkowicie opróżniony z materiału na podstawie kryteriów parametru VFA. Gdy alarm ten jest zgłaszany, suszarka VBD przechodzi automatycznie do stanu wyłączenia. Ten alarm może być użyty na przykład: na koniec dnia można celowo pozwolić na opróżnienie zbiornika grzejącego (poprzez wyłączenie podajnika) i pozwolić suszarce VBD na automatyczne zainicjowanie procedury wyłączenia w odpowiednim czasie.
<table>
<thead>
<tr>
<th>Alarm</th>
<th>Opis</th>
<th>Detalizacja</th>
</tr>
</thead>
</table>
| **ALARM:26** | **Materiał gotowy** | Jeżeli alarm gotowego materiału jest aktywowany w menu „Ustawienia alarmów”, to zostanie zgłoszony po wykonaniu pełnego cyklu suszenia próżniowego dla pierwszej i tylko pierwszej partii materiału. Po 15 sekundach alarm dźwiękowy wyłączy się automatycznie. Pierwsza partia materiału utrzymywana będzie w warunkach podciśnienia do czasu wyłączenia tego alarmu. Alarm ten ma dwa przeznaczenia:
1. Informowanie operatora, że suchy materiał jest gotowy do przetworzenia.
2. Jako mechanizm wstrzymania, o ile jest potrzebny, dzięki któremu operator zyskuje czas na przygotowanie procesu. |
| **ALARM:27** | **Automat. wylaczenie** | Ten alarm zgłaszany jest po rozpoczęciu automatycznego wyłączenia, tj. wyłączenia o ustawionej godzinie. „Rozpoczęcie” jest definiowane jako chwila, w której komora próżniowa zostanie napełniona po raz ostatni. |
| **ALARM:28** | **Niski poziom materiału w zbiorniku grzejącym** | W suszarkach z opcjonalnym czujnikiem poziomu w zbiorniku grzejącym, ten alarm jest zgłaszany, gdy alarm niskiego poziomu w zbiorniku grzejącym jest aktywowany w menu „Ustawienia alarmów” i poziom w zbiorniku grzejącym spadnie poniżej poziomu określonego w parametrze HHA. |
| **ALARM:29** | **Alarm temperatury materiału** | Gdy alarm temperatury materiału jest aktywowany w menu „Ustawienia alarmów”, to zostanie zgłoszony zawsze, gdy zbiornik grzejący otrzyma polecenie dozowania materiału do komory próżniowej i temperatura T2 (wylot zbiornika grzejącego) będzie poniżej wartości ustalonej w parametrze ESM. Celem tego alarmu jest poinformowanie operatora, że materiał nie jest wystarczająco nagrzany, najprawdopodobniej wskutek przekroczenia wydajności suszarki VBD. |
| **ALARM:30** | **Błąd opróżniania komory próżniowej** | Gdy alarm)błędu opróżniania komory próżniowej jest aktywowany w menu „Ustawienia alarmów”, to suszarka monitoruje opróżnianie komory próżniowej. W przypadku wykrycia, że z komory próżniowej do zbiornika odbiorczego nie trafiła wystarczająca ilość materiału po określonej liczbie prób zgodnie z wartością parametru VDR, zgłaszany jest ten alarm. Komora próżniowa będzie podejmowała próby napełnienia zbiornika odbiorczego, do czasu spełnienia kryteriów „skutecznego napełnienia”, po czym alarm zostanie automatycznie wyłączony. |
Aktualizowanie firmware suszarki VBD

Po włączeniu panelu sterowania suszarki VBD na pierwszym ekranie wyświetlona zostanie bieżąca wersja firmware. W razie potrzeby firmware suszarki VBD można zaktualizować z wykorzystaniem portu USB pod panelem sterowania. Firma Maguire udostępnia aktualizacje firmware suszarki VBD. Poniższe instrukcje szczegółowo wyjaśniają sposób aktualizacji firmware.

Skopio nową aktualizację firmware na pamięć Flash USB. (nie umieszczać w katalogu)
Włożyć pamięć Flash USB do portu USB suszarki VBD.

Nacisnąć przycisk SELECT aby zmieniać tryb wyboru na tryb konfiguracji (ikona kół zębatych).
Nacisnąć przycisk ENTER Na ekranie pojawi się:
TRYB=UST
PODAJ HASŁO 0 _ _ _ _

Nacisnąć aby przewinąć do pozycji „System”.

Nacisnąć przycisk ENTER aby wybrać menu „System”.

Nacisnąć aby przejść do pozycji „Akt. Firmware”.

Nacisnąć aby wybrać plik XUF znaleziony w pamięci Flash.

Nacisnąć przycisk ENTER aby rozpocząć aktualizację.

Dodatkowe informacje na temat aktualizacji oprogramowania
Aktualizacje oprogramowania mogą zostać udostępnione drogą elektroniczną, przesłane na adres e-mail lub pobrane. Nazwy plików aktualizacji oprogramowania zawierają datę publikacji. Na przykład VDP0916A.XUF należy rozumieć jako: VD=suszarka próżniowa, P=2016 (Q=2017), 09=wrzesień, 16=16 września, A=pierwsza wersja dla tego dnia. W czasie aktualizacji opisanej powyżej, nowe oprogramowanie znajdujące w pamięci Flash USB jest najpierw kopiowane na wewnętrzną kartę SD. Z karty SD oprogramowanie jest następnie wgrawane do suszarki VBD. Jeżeli wystąpi problem z suszarką VBD i nie będzie możliwości wykorzystania portu USB lub jeżeli oprogramowanie suszarki VBD ulegnie uszkodzeniu, uniemożliwiając wczytanie nowego oprogramowania z wykorzystaniem menu, to nowe oprogramowanie można pozyskać od firmy Maguire i zmienić nazwę pliku na UPDTFILE.BIN. Plik o zmienionej nazwie można umieścić na wewnętrznej karcie SD i ponownie zainstalować ją w suszarce VBD. Po włączeniu suszarki VBD, plik UPDTFILE.BIN zostanie automatycznie wczytany do suszarki VBD, przywracając oprogramowanie.
Teoria działania / wydajność

TEORIA SUSZENIA PRÓŻNIOWEGO

Woda wrze w temperaturze 212°F (100°C). Jednak dzieje się tak tylko na poziomie morza, czyli przy standardowym ciśnieniu atmosferycznym, które wynosi 14,7 funtów/cal kwadratowy (1 bar), co jest równoważne 29,92 calom (760 mm) słupa rtęci (Hg).

W niższym ciśnieniu temperatura wrzenia wody jest niższa.

Standardowe ciśnienie atmosferyczne utrzymuje słup rtęci o wysokości 29,92 cali (760 mm). Po wytworzeniu idealnej próżni ponad słupem rtęci, rtęć podniesie się na wysokość 29,92 cali, dlatego wartość odczytywana na próżniomierzu przy pełnej próżni wynosi 29,92 cali. Niskie podciśnienie daje niższe wartości. Brak podciśnienia to zero.

Woda w warunkach podciśnienia równego 25 cali (635 mm) słupa rtęci wrze w 133°F (56°C). Po pogrzaniu granulatu do temperatury 160°F (71°C) lub większej i umieszczeniu go w próżni 25 cali (635 mm), para wodna w nim zawarta wrze. Ta zwiększa aktywność molekularną w granulacie oraz znacznie zmniejszone ciśnienie powoduje usunięcie wilgoci z granulatu w bardzo krótkim czasie. Z tego wynika niezwykle krótki czas suszenia w suszarce próżniowej.

WYDAJNOŚĆ

Prawdziwą miarą wydajności suszarki próżniowej jest wilgotność żywicy po zakończeniu suszenia. Zmierzenie wilgotności żywicy nie jest jednak łatwe, tak więc producenci suszarek stosują inne kryteria ustalania wydajności.

Konwencjonalne suszarki wykorzystują PUNKT ROSY do pomiaru wydajności. Jest to miara wilgotności powietrza przepływającego nad żywicą, ale nie wilgotności samej żywicy.

Na przykład dla konkretnej żywicy, z doświadczenia wiadomo, że powietrze o temperaturze 180°F (82°C) osuszone do temperatury punktu rosy minus 40, przepływające nad materiałem przez 4 godziny, umożliwia zredukowanie wilgotności takiej żywicy do wymaganego poziomu.

Ponieważ nasze suszarki VBD NIE korzystają z suchego powietrza, pomiar ,,punkt rosy” jest niemożliwy.

W naszym przypadku dla takiej samej żywicy, z doświadczenia wiemy, że umieszczenie materiału rozgrzanego do temperatury 180°F (82°C) w próżni 25 cali słupa rtęci (635 mm) na 20 minut umożliwia zredukowanie wilgotności tej żywicy do odpowiedniego poziomu.

Dlatego w suszarkach konwencjonalnych suchość materiału jest zapewniana poprzez pomiar temperatury i PUNKTU ROSY w czasie, podczas gdy w suszarkach próżniowych poziom wilgotności materiału jest mierzony poprzez pomiar temperatury i PODCIŚNIENIA w czasie.

Osiągnięcie określonej temperatury i podciśnienia oraz utrzymanie ich przez odpowiednio długi czas daje pewność, że materiał jest suchy.

Wydajność można ocenić samodzielnie, wzrokowo poprzez kontrolowanie temperatury i podciśnienia. Oczywiście ostatecznym testem jest jakość produktu. Zapraszamy do przesyłania uwag i spostrzeżeń.
Dokumentacja techniczna

Specyfikacja techniczna suszarki VBD-150

<table>
<thead>
<tr>
<th>Poz.</th>
<th>parametr</th>
<th>wartość</th>
<th>jednostki</th>
<th>wartość</th>
<th>jednostki</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>zaprojektowana wydajność</td>
<td>150</td>
<td>funty/godzinę</td>
<td>68</td>
<td>kg/godzinę</td>
</tr>
<tr>
<td>2</td>
<td>maksymalna temperatura pracy</td>
<td>375</td>
<td>°F</td>
<td>190</td>
<td>°C</td>
</tr>
<tr>
<td>3</td>
<td>maksymalne podciśnienie, bezwzględne</td>
<td>75</td>
<td>mm Hg.</td>
<td>75</td>
<td>mm Hg.</td>
</tr>
<tr>
<td>4</td>
<td>całkowita masa urządzenia, bez materiału</td>
<td>501</td>
<td>funty</td>
<td>227</td>
<td>kg</td>
</tr>
<tr>
<td>5</td>
<td>całkowita wysokość urządzenia</td>
<td>96</td>
<td>cali</td>
<td>2,44</td>
<td>metrów</td>
</tr>
<tr>
<td>6</td>
<td>całkowita wysokość urządzenia z rozszerzeniem</td>
<td>108</td>
<td>cali</td>
<td>2,74</td>
<td>metrów</td>
</tr>
<tr>
<td>7</td>
<td>napięcie</td>
<td>240/480/575</td>
<td>V</td>
<td>400</td>
<td>V</td>
</tr>
<tr>
<td>8</td>
<td>prąd pełnego obciążenia (FLA)</td>
<td>16,4/8,2/6,8</td>
<td>A</td>
<td>9,7</td>
<td>A</td>
</tr>
<tr>
<td>9</td>
<td>faza</td>
<td>3</td>
<td>Ø</td>
<td>3</td>
<td>Ø</td>
</tr>
<tr>
<td>10</td>
<td>częstotliwość</td>
<td>60</td>
<td>Hz</td>
<td>50</td>
<td>Hz</td>
</tr>
<tr>
<td>11</td>
<td>wymagane zasilanie sprężonym powietrzem, ciśnienie utrzymane</td>
<td>85</td>
<td>psi</td>
<td>5,86</td>
<td>bar</td>
</tr>
<tr>
<td>12</td>
<td>wymagane zasilanie sprężonym powietrzem, maksymalne natężenie przepływu</td>
<td>13,5</td>
<td>SCFM</td>
<td>382</td>
<td>l/min</td>
</tr>
<tr>
<td>13</td>
<td>wymagane zasilanie sprężonym powietrzem, średnie natężenie przepływu</td>
<td>5,2</td>
<td>SCFM</td>
<td>147</td>
<td>l/min</td>
</tr>
<tr>
<td>14</td>
<td>model dmuchawy</td>
<td>RBH3</td>
<td>All-Star</td>
<td>RBH3</td>
<td>All-Star</td>
</tr>
<tr>
<td>15</td>
<td>moc dmuchawy</td>
<td>1,1</td>
<td>KM</td>
<td>0,75</td>
<td>kW</td>
</tr>
<tr>
<td>16</td>
<td>maksymalne natężenie przepływu dmuchawy</td>
<td>105</td>
<td>SCFM</td>
<td>2464</td>
<td>l/min</td>
</tr>
<tr>
<td>17</td>
<td>maksymalne ciśnienie dmuchawy</td>
<td>58</td>
<td>cali H₂O</td>
<td>139</td>
<td>mbar</td>
</tr>
<tr>
<td>18</td>
<td>poziom hałasu dmuchawy</td>
<td>64</td>
<td>db(A)</td>
<td>63</td>
<td>db(A)</td>
</tr>
<tr>
<td>19</td>
<td>moc grzałki</td>
<td>11 000</td>
<td>W</td>
<td>11 000</td>
<td>W</td>
</tr>
<tr>
<td>20</td>
<td>model generatora podciśnienia</td>
<td>JS-250</td>
<td>Vaccon</td>
<td>JS-250</td>
<td>Vaccon</td>
</tr>
<tr>
<td>21</td>
<td>śr. wew. komory próżniowej</td>
<td>13,5</td>
<td>cali</td>
<td>343</td>
<td>mm</td>
</tr>
<tr>
<td>22</td>
<td>wysokość zbiornika grzejącego</td>
<td>27</td>
<td>cali</td>
<td>686</td>
<td>mm</td>
</tr>
<tr>
<td>23</td>
<td>pojemność zbiornika grzejącego</td>
<td>2</td>
<td>stopy sześciennne</td>
<td>56,6</td>
<td>l</td>
</tr>
<tr>
<td>24</td>
<td>bezwzględna pojemność zbiornika grzejącego</td>
<td>2,5</td>
<td>stopy sześciennne</td>
<td>70,8</td>
<td>l</td>
</tr>
<tr>
<td>25</td>
<td>pojemność zbiornika grzejącego z rozszerzeniem</td>
<td>3</td>
<td>stopy sześciennne</td>
<td>85,0</td>
<td>l</td>
</tr>
<tr>
<td>26</td>
<td>bezwzględna pojemność zbiornika grzejącego z rozszerzeniem</td>
<td>3,5</td>
<td>stopy sześciennne</td>
<td>99,1</td>
<td>l</td>
</tr>
<tr>
<td>27</td>
<td>masa zbiornika grzejącego bez materiału</td>
<td>115</td>
<td>funty</td>
<td>52,2</td>
<td>kg</td>
</tr>
<tr>
<td>28</td>
<td>śr. wew. komory próżniowej</td>
<td>12,5</td>
<td>cali</td>
<td>318</td>
<td>mm</td>
</tr>
<tr>
<td>29</td>
<td>wysokość komory próżniowej</td>
<td>14</td>
<td>cali</td>
<td>356</td>
<td>mm</td>
</tr>
<tr>
<td>30</td>
<td>pojemność komory próżniowej</td>
<td>1</td>
<td>stopy sześciennne</td>
<td>28,3</td>
<td>l</td>
</tr>
<tr>
<td>31</td>
<td>bezwzględna pojemność powietrza komory próżniowej</td>
<td>2,25</td>
<td>stopy sześciennne</td>
<td>63,7</td>
<td>l</td>
</tr>
<tr>
<td>32</td>
<td>normalna pojemność wypustowa komory próżniowej</td>
<td>1,82</td>
<td>stopy sześciennne</td>
<td>51,5</td>
<td>l</td>
</tr>
<tr>
<td>33</td>
<td>masa komory próżniowej bez materiału</td>
<td>44</td>
<td>funty</td>
<td>20,0</td>
<td>kg</td>
</tr>
<tr>
<td>34</td>
<td>śr. wew. zbiornika odbiorczego</td>
<td>15</td>
<td>cali</td>
<td>381,0</td>
<td>mm</td>
</tr>
<tr>
<td>35</td>
<td>wysokość zbiornika odbiorczego</td>
<td>11,5</td>
<td>cali</td>
<td>292,1</td>
<td>mm</td>
</tr>
<tr>
<td>36</td>
<td>pojemność zbiornika odbiorczego</td>
<td>1,3</td>
<td>stopy sześciennne</td>
<td>36,8</td>
<td>l</td>
</tr>
<tr>
<td>37</td>
<td>bezwzględna pojemność zbiornika odbiorczego</td>
<td>1,6</td>
<td>stopy sześciennne</td>
<td>45,3</td>
<td>l</td>
</tr>
<tr>
<td>38</td>
<td>masa zbiornika odbiorczego bez materiału</td>
<td>21,5</td>
<td>funty</td>
<td>9,8</td>
<td>kg</td>
</tr>
</tbody>
</table>
Schematy suszarki VBD-150

Schemat połączeń karty I/O suszarki VBD-150
Schemat połączeń karty I/O VBD-150 I/O z falownikiem
Schematy połączeń wysokiego napięcia

Schemat połączeń suszarki VBD-150 240V

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3sp10-1-60</td>
<td>main disconnect body, 40A 3-pole (Wagner)</td>
</tr>
<tr>
<td>2</td>
<td>e24re2050</td>
<td>motor contactor, 20A (Wagner)</td>
</tr>
<tr>
<td>3</td>
<td>3sp3-5</td>
<td>overload relay, 2.5A – 4.0A (Wagner)</td>
</tr>
<tr>
<td>4</td>
<td>et59</td>
<td>240VDC power supply, 30W, 1.5A (Wagner)</td>
</tr>
<tr>
<td>5</td>
<td>5x34</td>
<td>transformer, 50VAC, 150 VAC secondary (Wagner)</td>
</tr>
<tr>
<td>6</td>
<td>et9</td>
<td>amp filter, 50Hz (Wagner)</td>
</tr>
<tr>
<td>7</td>
<td>et62</td>
<td>relay, solid state, 400V, 20A (Wagner)</td>
</tr>
<tr>
<td>8</td>
<td>et65-52</td>
<td>heat sink, SSR, 2.0 C/W</td>
</tr>
<tr>
<td>9</td>
<td>et65-07</td>
<td>ground bar, 7 terminals</td>
</tr>
<tr>
<td>10</td>
<td>et155-24</td>
<td>tube heater, 115V, 240 VAC 5W (Wagner)</td>
</tr>
<tr>
<td>11</td>
<td>et155-1</td>
<td>reversing switch, 110 VAC 6W (Wagner)</td>
</tr>
<tr>
<td>12</td>
<td>et4-06</td>
<td>fuse, 1/2 amp time-delay “ATC” (Wagner)</td>
</tr>
<tr>
<td>13</td>
<td>et132t</td>
<td>relay, 24 VAC SPDT, size DK mount (Wagner)</td>
</tr>
</tbody>
</table>

Model: VBD-150
Voltage: 240V 50 Hz
Drawing No.: 8048008100.DWG

Maguire Products, Inc.
11 Osceola Road, Aston, PA 19014
Tel: (610) 436-2412
Fax: (610) 436-7003
http://www.maguire.com

Model: VBD-150
Schematic: main high/low
Voltage: 240V 50 Hz
Drawing No.: 8048008100.DWG

Made by: MG
Date drawn: 4/10/13
Rev. by: MG
Last Updated: 6/28/16
Schemat połączeń suszarki VBD-150 400V

Bill of Materials

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>main disconnect body, 40A 3-pole</td>
</tr>
<tr>
<td>2</td>
<td>motor contactor, 20A</td>
</tr>
<tr>
<td>3</td>
<td>overload relay, 14A - 2.0A</td>
</tr>
<tr>
<td>4</td>
<td>24VDC power supply, 35W, 1.5A</td>
</tr>
<tr>
<td>5</td>
<td>transformer, 50VA, 115 VAC secondary</td>
</tr>
<tr>
<td>6</td>
<td>RTD, 50Ω</td>
</tr>
<tr>
<td>7</td>
<td>relay, solid state, 480V, 25A</td>
</tr>
<tr>
<td>8</td>
<td>heat sink, SSR, 2.0 C/W</td>
</tr>
<tr>
<td>9</td>
<td>ground bar, 7 terminals</td>
</tr>
<tr>
<td>10</td>
<td>tube heater, 1kW, 400 VAC 50</td>
</tr>
<tr>
<td>11</td>
<td>regenerative heater, 1.1 kPa</td>
</tr>
<tr>
<td>12</td>
<td>heater, 1/2 amp time delay, "ATO"</td>
</tr>
<tr>
<td>13</td>
<td>relay, 24 VDC 1PO, slim DIN mount</td>
</tr>
</tbody>
</table>

Model: VBD-150
Schematic: main high/low
Voltage: 400V 3# 50 Hz
Drawing No.: e01234900000809000000000000000000

Drawn by: MG
Date drawn: 4/10/16
Revised by: MG
Last Updated: 6/28/16

Maguire Products, Inc.
Schemat połączeń suszarki VBD-150 400V z falownikiem
Schemat połączeń suszarki VBD-150 480V
Schemat połączeń suszarki VBD-150 480V z falownikiem
Schemat połączeń suszarki VBD-150 575V

Bit of Materials

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>main disconnect switch, 45A 3-pole</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>motor contactor, 20A</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>overload relay, 1.1kW-1.6kW</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>24VDC power supply, 35VA, 1.5A</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>transformer, 575V -> 120V</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>RTD, 500Ω, 50Ω</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>relay, solid state, 600V, 35VA</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>heat sink, 500W, 2.0 C/W</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>ground bar, 7 terminals</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>tube heater, 14kW, 575V 3-phase</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>regenerative blower, 1.1 HP, 575V</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>fuse block, 1 pole, 600V, 30 amp</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>fuse, 1/2 amp time-delay, "ATC"</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>fuse block, 2 poles, 600V</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>relay, 24 VDC PNP, slim DIN mount</td>
</tr>
</tbody>
</table>

Model: VBD-150
Voltage: 575V 3 phase 60 Hz
Drawing No.: edwgs100.dwg
Drawn by: MG
Date drawn: 4/10/13
Rev by: MG
Last Updated: 6/28/16

Maguire Products, Inc.
11 Dreselle Road, Acton, MA 01420
Tel: (888) 459-2913
Fax: (978) 459-2700
http://www.maguire.com
Maguire Products, Inc.

Schemat układu pneumatycznego suszarki VBD-150

<table>
<thead>
<tr>
<th>Num.</th>
<th>Description</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vacuum Chamber</td>
<td>evacuation</td>
</tr>
<tr>
<td>2</td>
<td>Vacuum Pump</td>
<td>evacuation</td>
</tr>
<tr>
<td>3</td>
<td>Vacuum Control Valve</td>
<td>evacuation</td>
</tr>
<tr>
<td>4</td>
<td>Manometer</td>
<td>measurement</td>
</tr>
<tr>
<td>5</td>
<td>Temperature Controller</td>
<td>temperature control</td>
</tr>
<tr>
<td>6</td>
<td>Flow Meter</td>
<td>measurement</td>
</tr>
<tr>
<td>7</td>
<td>Solenoid Valve</td>
<td>flow control</td>
</tr>
<tr>
<td>8</td>
<td>Air Filter</td>
<td>filtration</td>
</tr>
<tr>
<td>9</td>
<td>Air Compressor</td>
<td>air supply</td>
</tr>
</tbody>
</table>

Diagram of VBD-150 Vacuum Drying System

1. Vacuum Chamber evacuation
2. Vacuum Pump evacuation
3. Vacuum Control Valve evacuation
4. Manometer measurement
5. Temperature Controller temperature control
6. Flow Meter measurement
7. Solenoid Valve flow control
8. Air Filter filtration
9. Air Compressor air supply

Date: 10 marca 2017 r.

Maguire Products, Inc.

VBD® — suszarka próżniowa®
Lista zalecanych części zamiennej do suszarki VBD-150

Uwaga: Zaleca się przechowywanie pozycji 1 do 8 na terenie zakładu w dziale konserwacji.

<table>
<thead>
<tr>
<th>Poz</th>
<th>Nr prod. MPI</th>
<th>Opis</th>
<th>Ogólne umiejscowienie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>hf19-E</td>
<td>zamienny wkład filtra, wlot dmuchawy</td>
<td>panel tylny</td>
</tr>
<tr>
<td>2</td>
<td>8124-11</td>
<td>uszczelka silikonowa, zawór spustowy komory próżniowej</td>
<td>komora próżniowa</td>
</tr>
<tr>
<td>3</td>
<td>go-349V</td>
<td>pierścień uszczelniający, rozmiar 349, Viton</td>
<td>górna zasuwa komory próżniowej</td>
</tr>
<tr>
<td>4</td>
<td>go-341V</td>
<td>pierścień uszczelniający, rozmiar 341, Viton</td>
<td>dolna zasuwa komory próżniowej</td>
</tr>
<tr>
<td>5</td>
<td>as8124-03</td>
<td>zesp. płytki uszczelniającej komory próżniowej, zawór spustowy komory próżniowej</td>
<td>dolna zasuwa komory próżniowej</td>
</tr>
<tr>
<td>6</td>
<td>nv88</td>
<td>elektrozawór, 4-drożny, 24 VDC</td>
<td>szafka główna</td>
</tr>
<tr>
<td>7</td>
<td>nf-30E</td>
<td>wkład filtra, do regulatora seri „AW30”</td>
<td>szafka układu pneumatycznego</td>
</tr>
<tr>
<td>8</td>
<td>nfos2E</td>
<td>wkład filtra, do separatora oleju</td>
<td>szafka układu pneumatycznego</td>
</tr>
</tbody>
</table>

Pozostałe części zamienne

<table>
<thead>
<tr>
<th>Poz</th>
<th>Nr prod. MPI</th>
<th>Opis</th>
<th>Umiejscowienie</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Es3RU-2</td>
<td>przekaźnik przeciążeniowy, 1,4 A - 2,0 A</td>
<td>szafka elektryczna</td>
</tr>
<tr>
<td>10</td>
<td>Es3RU-5</td>
<td>przekaźnik przeciążeniowy, 2,8 A - 4,0 A</td>
<td>szafka elektryczna</td>
</tr>
<tr>
<td>11</td>
<td>Es3RT2016</td>
<td>stycznik silnika, 3 biegunowy, 20 A, 24 VDC</td>
<td>szafka elektryczna</td>
</tr>
<tr>
<td>12</td>
<td>ehr09</td>
<td>przekaźnik, SS, 480 V 25 A, sygnał 24-265 VAC</td>
<td>szafka elektryczna</td>
</tr>
<tr>
<td>13</td>
<td>ezd-.5t</td>
<td>bezpiecznik, 1/2 A zwloczny, styl Midget</td>
<td>szafka elektryczna</td>
</tr>
<tr>
<td>14</td>
<td>eRTD6-100</td>
<td>czujnik temp., śr. 6 mm x dł. 100 mm, Pt100</td>
<td>zbiornik grzejący</td>
</tr>
<tr>
<td>15</td>
<td>elc30V</td>
<td>ogniwo obciążnikowe, udźwig 30 kg</td>
<td>zbior. odbierający, kom. próżniowej</td>
</tr>
<tr>
<td>16</td>
<td>esp-50</td>
<td>przełącznik ciśnienia, nastawa 50 psi, 1/8” NPT</td>
<td>szafka główna</td>
</tr>
<tr>
<td>17</td>
<td>eabVBD-01</td>
<td>układ elektroniczny I/O</td>
<td>szafka elektryczna</td>
</tr>
<tr>
<td>18</td>
<td>eabVBD-03</td>
<td>układ elektroniczny wyświetlacz / HMI</td>
<td>przedni panel sterowania</td>
</tr>
<tr>
<td>19</td>
<td>eabVBD-04</td>
<td>układ elektroniczny pilota zawieszanego (0,8” 4-cyfrowy, numeryczny)</td>
<td>przedni panel sterowania</td>
</tr>
<tr>
<td>20</td>
<td>nmd-01E</td>
<td>wkład zamienny do membranowego osuszacza powietrza</td>
<td>szafka układu pneumatycznego</td>
</tr>
<tr>
<td>21</td>
<td>eht11-24</td>
<td>grzałka rurowa, 11 000 W 3 fazy 240 VAC</td>
<td>szafka główna</td>
</tr>
<tr>
<td>22</td>
<td>eht11-40</td>
<td>grzałka rurowa, 11 000 W 3 fazy 400 VAC</td>
<td>szafka główna</td>
</tr>
<tr>
<td>23</td>
<td>eht11-48</td>
<td>grzałka rurowa, 11 000 W 3 fazy 480 VAC</td>
<td>szafka główna</td>
</tr>
<tr>
<td>24</td>
<td>eht11-56</td>
<td>grzałka rurowa, 11 000 W 3 fazy 575 VAC</td>
<td>szafka główna</td>
</tr>
<tr>
<td>25</td>
<td>ehs1-02</td>
<td>światło ostrzegawcze, czerwone, podstawka magnetyczna, 24 VDC</td>
<td>górna powierzchnia</td>
</tr>
<tr>
<td>26</td>
<td>ehb-2</td>
<td>brzęczyk piezoelektryczny, 24 VDC</td>
<td>przedni panel sterowania</td>
</tr>
<tr>
<td>27</td>
<td>esh-01</td>
<td>uchwyt blokady, czerwona/żółta klamka</td>
<td>przedni panel sterowania</td>
</tr>
</tbody>
</table>
Specyfikacja techniczna suszarki VBD-300

<table>
<thead>
<tr>
<th>Poz.</th>
<th>parametr</th>
<th>Krajowy/Kanada</th>
<th>wartość</th>
<th>jednostki</th>
<th>Europa</th>
<th>wartość</th>
<th>jednostki</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>zaprojektowana wydajność</td>
<td>300</td>
<td>funty/godzinę</td>
<td>136</td>
<td>kg/godzinę</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>maksymalna temperatura pracy</td>
<td>375</td>
<td>°F</td>
<td>190</td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>maksymalne podciśnienie, bezwzględne</td>
<td>75</td>
<td>mm Hg.</td>
<td>75</td>
<td>mm Hg.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>całkowita masa urządzenia, bez materiału</td>
<td>918</td>
<td>funty</td>
<td>416</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>całkowita wysokość urządzenia</td>
<td>119</td>
<td>cali</td>
<td>3,02</td>
<td>metrów</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>całkowita wysokość urządzenia z rozszerzeniem</td>
<td>134</td>
<td>cali</td>
<td>3,40</td>
<td>metrów</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>napięcie</td>
<td>480 / 575</td>
<td>V</td>
<td>380</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>prąd pełnego obciążenia (FLA)</td>
<td>27 / 22</td>
<td>A</td>
<td>33</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>faza</td>
<td>3</td>
<td>Ø</td>
<td>3</td>
<td>Ø</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>częstotliwość</td>
<td>60</td>
<td>Hz</td>
<td>50</td>
<td>Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>wymagane zasilanie sprężonym powietrzem, ciśnienie utrzymane</td>
<td>85</td>
<td>psi</td>
<td>5,86</td>
<td>bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>wymagane zasilanie sprężonym powietrzem, maksymalne natężenie przepływu</td>
<td>13,5</td>
<td>SCFM</td>
<td>382</td>
<td>l/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>wymagane zasilanie sprężonym powietrzem, średnie natężenie przepływu</td>
<td>6,5</td>
<td>SCFM</td>
<td>184</td>
<td>l/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>model dmuchawy</td>
<td>RBH6-305-3</td>
<td>All-Star</td>
<td>RBH4-2-3</td>
<td>All-Star</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>moc dmuchawy</td>
<td>3,5</td>
<td>KM</td>
<td>2,2</td>
<td>kW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>maksymalne natężenie przepływu dmuchawy</td>
<td>228</td>
<td>SCFM</td>
<td>5380</td>
<td>l/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>maksymalne ciśnienie dmuchawy</td>
<td>89</td>
<td>cali H₂O</td>
<td>228</td>
<td>mbar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>poziom hałasu dmuchawy</td>
<td>77</td>
<td>db(A)</td>
<td>72</td>
<td>db(A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>moc grzałki</td>
<td>18 000</td>
<td>W</td>
<td>18 000</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>model generatora podciśnienia</td>
<td>JS-250</td>
<td>Vaccon</td>
<td>JS-250</td>
<td>Vaccon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>śr. wew. zbiornika grzejącego</td>
<td>17</td>
<td>cali</td>
<td>432</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>wysokość zbiornika grzejącego</td>
<td>27</td>
<td>cali</td>
<td>686</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>pojemność zbiornika grzejącego</td>
<td>4,25</td>
<td>stopy sześcienna</td>
<td>120,3</td>
<td>l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>bezwzględna pojemność zbiornika grzejącego</td>
<td>5,125</td>
<td>stopy sześcienna</td>
<td>145,1</td>
<td>l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>pojemność zbiornika grzejącego z rozszerzeniem</td>
<td>6,25</td>
<td>stopy sześcienna</td>
<td>177,0</td>
<td>l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>bezwzględna pojemność zbiornika grzejącego z rozszerzeniem</td>
<td>7,125</td>
<td>stopy sześcienna</td>
<td>201,8</td>
<td>l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>masa zbiornika grzejącego bez materiału</td>
<td>201</td>
<td>funty</td>
<td>91,2</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>śr. wew. komory próżniowej</td>
<td>16,35</td>
<td>cali</td>
<td>415</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>wysokość komory próżniowej</td>
<td>17,5</td>
<td>cali</td>
<td>445</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>pojemność komory próżniowej</td>
<td>2</td>
<td>stopy sześcienna</td>
<td>56,6</td>
<td>l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>bezwzględna pojemność powietrza komory próżniowej</td>
<td>2,5</td>
<td>stopy sześcienna</td>
<td>70,8</td>
<td>l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>normalna pojemność wypustowa komory próżniowej</td>
<td>1,6</td>
<td>stopy sześcienna</td>
<td>45,3</td>
<td>l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>masa komory próżniowej bez materiału</td>
<td>72,5</td>
<td>funty</td>
<td>32,9</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>śr. wew. zbiornika odbiorczego</td>
<td>19</td>
<td>cali</td>
<td>483</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>wysokość zbiornika odbiorczego</td>
<td>14</td>
<td>cali</td>
<td>356</td>
<td>mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>pojemność zbiornika odbiorczego</td>
<td>2,25</td>
<td>stopy sześcienna</td>
<td>63,7</td>
<td>l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>bezwzględna pojemność zbiornika odbiorczego</td>
<td>2,8</td>
<td>stopy sześcienna</td>
<td>79,3</td>
<td>l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>masa zbiornika odbiorczego bez materiału</td>
<td>31,5</td>
<td>funty</td>
<td>14,3</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Schematy suszarki VBD-300

Schemat połączeń karty I/O suszarki VBD-300
Schemat połączeń karty I/O suszarki VBD-300 z falownikiem
Schemat połączeń suszarki VBD-300 400V
Schemat połączeń suszarki VBD-300 400V z falownikiem
Schemat połączeń suszarki VBD-300 480V

USE of Materials

<table>
<thead>
<tr>
<th>ITEM</th>
<th>Part#</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>e4610-1-45</td>
<td>main disconnect body, 40A 3-pole</td>
</tr>
<tr>
<td>2</td>
<td>e46102156</td>
<td>motor contactor, 25A</td>
</tr>
<tr>
<td>3</td>
<td>e4610-5-6</td>
<td>disconnect relay, 6 A, 6.3 kV</td>
</tr>
<tr>
<td>4</td>
<td>e4610-27</td>
<td>24VDC power supply, 20VA, 1.5A</td>
</tr>
<tr>
<td>5</td>
<td>e4610-34</td>
<td>transformer, 50VA, 115VAC secondary</td>
</tr>
<tr>
<td>6</td>
<td>e4610-58</td>
<td>EN filter, 58V</td>
</tr>
<tr>
<td>7</td>
<td>e4610-60</td>
<td>relay, solid state, 60VDC, 50A</td>
</tr>
<tr>
<td>8</td>
<td>e4610-152</td>
<td>relay, solid state, SSR, 2.0 A/48</td>
</tr>
<tr>
<td>9</td>
<td>e4610-27</td>
<td>ground bar, 3 connections</td>
</tr>
<tr>
<td>10</td>
<td>e4610-48</td>
<td>fuse, 1/2 amp time-delay, "A Type"</td>
</tr>
<tr>
<td>11</td>
<td>e4610-55</td>
<td>relay, 24VDC 1NO, slim DIN mount</td>
</tr>
</tbody>
</table>

Model: VBD-300

Schematic: main high/low

Voltage: 480V

Drawing No.: e4610300.png

Drawn by: MG

Date drawn: 2/16/16

Rev by: MG

Last Updated: 6/30/16
Schemat połączeń suszarki VBD-300 480V z falownikiem

Diagram Description:

1. **Main Disconnect Switch**: 480V 3-phase
2. **3-way, 480V**
3. **DW4, 600V**
4. **fuses, 1/2 amp time delay, "AO"**
5. **motor, 24 VDC**
6. **motor controller**
7. **enclosure**

Bill of Materials:

- **Item:** 1, **Part:** 1, **Description:** main disconnect switch, 480V 3-phase
- **Item:** 2, **Part:** 3-way, 480V
- **Item:** 3, **Part:** DW4, 600V
- **Item:** 4, **Part:** fuses, 1/2 amp time delay, "AO"
- **Item:** 5, **Part:** motor, 24 VDC
- **Item:** 6, **Part:** motor controller

Schematic Information:

- **Model:** VBD-300
- **Schematic:** main high/low voltage
- **Voltage:** 480V 50Hz
- **Drawing No.:** et0609001.png
- **Drawn By:** MG
- **Rev By:** MG
- **Last Updated:** 6/30/16
- **Date Drawn:** 2/16/16

Company Information:

- **Maguire Products, Inc.**
 - 11 Ozenka Road, Acton, MA 01720
 - Tel: (617) 405-2412
 - Fax: (617) 405-2750
 - http://www.maguire.com
Schemat połączeń suszarki VBD-300 575V
Schemat układu pneumatycznego suszarki VBD-300
Lista zalecanych części zamiennych do suszarki VBD-300

Uwaga: Zaleca się przechowywanie pozycji 1 do 8 na terenie zakładu w dziale konserwacji.

Pozostałe części zamienne

<table>
<thead>
<tr>
<th>Poz</th>
<th>Nr prod. MPI</th>
<th>Opis</th>
<th>Ogólne umiejscowienie</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>es3RU-6</td>
<td>przekaźnik przeciżeniowy, 3,5 A – 5,0 A</td>
<td>szafka elektryczna</td>
</tr>
<tr>
<td>10</td>
<td>es3RU-7</td>
<td>przekaźnik przeciżeniowy, 4,5 A – 6,3 A</td>
<td>szafka elektryczna</td>
</tr>
<tr>
<td>11</td>
<td>es3RT2016</td>
<td>stycznik silnika, 3 biegunowy, 20 A, 24 VDC</td>
<td>szafka elektryczna</td>
</tr>
<tr>
<td>12</td>
<td>ehr09</td>
<td>przekaźnik, SS, 480 V 25 A, sygnał 24-265 VAC</td>
<td>szafka elektryczna</td>
</tr>
<tr>
<td>13</td>
<td>ezd-.5t</td>
<td>bezpiecznik, 1/2 A zwolniony, styl Midget</td>
<td>szafka elektryczna</td>
</tr>
<tr>
<td>14</td>
<td>eRTD6-100</td>
<td>czujnik temp., śr. 6 mm x dł. 100 mm, Pt100</td>
<td>zbiornik grzejący</td>
</tr>
<tr>
<td>15</td>
<td>elc50V</td>
<td>ogniwo obciążkowe, udźwig 50 kg</td>
<td>zbiornik odbierający, kom. próżniowa</td>
</tr>
<tr>
<td>16</td>
<td>esp-50</td>
<td>przełącznik ciśnienia, nastawa 50 psi, 1/8" NPT</td>
<td>szafka główna</td>
</tr>
<tr>
<td>17</td>
<td>eabVBD-01</td>
<td>układ elektroniczny I/O</td>
<td>szafka elektryczna</td>
</tr>
<tr>
<td>18</td>
<td>eabVBD-03</td>
<td>układ elektroniczny wyświetlacz / HMI</td>
<td>przedni panel sterowania</td>
</tr>
<tr>
<td>19</td>
<td>eabVBD-04</td>
<td>układ elektroniczny pilota zawieszanego (0,8" 4-cyfrowy, numeryczny)</td>
<td>przedni panel sterowania</td>
</tr>
<tr>
<td>20</td>
<td>nmd-03E</td>
<td>wkład zamienny do membranowego osuszacza powietrza</td>
<td>szafka układu pneumatycznego</td>
</tr>
<tr>
<td>21</td>
<td>eht18-24</td>
<td>grzałka rurowa, 18 000 W 3 fazy 240 VAC</td>
<td>szafka główna</td>
</tr>
<tr>
<td>22</td>
<td>eht18-40</td>
<td>grzałka rurowa, 18 000 W 3 fazy 400 VAC</td>
<td>szafka główna</td>
</tr>
<tr>
<td>23</td>
<td>eht18-48</td>
<td>grzałka rurowa, 18 000 W 3 fazy 480 VAC</td>
<td>szafka główna</td>
</tr>
<tr>
<td>24</td>
<td>eht18-56</td>
<td>grzałka rurowa, 18 000 W 3 fazy 575 VAC</td>
<td>szafka główna</td>
</tr>
<tr>
<td>25</td>
<td>ehs1-02</td>
<td>światło ostrzegawcze, czerwone, podstawka magnetyczna, 24 VDC</td>
<td>góra powierzchnia</td>
</tr>
<tr>
<td>26</td>
<td>ehb-2</td>
<td>brzęczyk piezoelektryczny, 24 VDC</td>
<td>przedni panel sterowania</td>
</tr>
<tr>
<td>27</td>
<td>esh-01</td>
<td>uchwyt blokady, czerwona/żółta klamka</td>
<td>przedni panel sterowania</td>
</tr>
</tbody>
</table>
DEKLARACJA ZGODNOŚCI

Dyrektwy maszynowej
2006/42/WE
Dyrektwa EMC 2014/30/UE

Nazwa producenta lub dostawcy
Maguire Products Inc.

Pełny adres pocztowy i kraj pochodzenia
11 Crozerville Rd, Aston, PA 19014, USA

Opis produktu
VBD-150, VBD-300

Nazwa, typ lub model, numer partii lub seryjny
Model: VBD-150, VBD-300 Numer seryjny:

Użyte normy, w tym numer, tytuł, data publikacji i inne powiązane dokumenty
EN4414 (2010); EN11201 (2010); EN12100 (2010); EN13849-1 (2015); EN13850 (2015); EN13857 (2008); EN14119 (2013); EN14120 (2015); EN60204-1 (AC:2010) i EN61310-1 (2008)

Nazwa osoby odpowiedzialnej na terenie UE — Paul Edmondson (dyrektor)

Pełny adres pocztowy, jeżeli inny niż adres producenta
Maguire Europe: Tame Park, Tamworth, Staffs, B77 5DY, UK

Deklaracja

Producent niniejszym oświadcza, że produkt opisany zgodnie z powyższymi informacjami został wytworzony/dostarczony zgodnie z wymienionymi normami i innymi powiązanymi dokumentami zgodnie z postanowieniami wymienionych dyrektyw ze zmianami.

Podpis producenta: ______________________

Stanowisko: ______________________________

Data: ______________
Wsparcie techniczne i dane kontaktowe

Maguire Products Inc.
11 Crozerville Road
Aston, PA 19014
Tel: 610 459 4300
Faks: 610 459 2700
Email: info@maguire.com
Strona internetowa: www.maguire.com

Maguire Europe
Tame Park
Tamworth
Staffordshire
B775DY
UK
Tel: + 44 1827 265 850
Faks: + 44 1827 265 855
Email: info@maguire-europe.com

Maguire Products Asia PTE LTD
Siedziba
15 Changi North Street 1
#01-15, I-Lofts
Singapore 498765
Tel: 65 6848-7117
Faks: 65 6542-8577
E-mail: magasia@maguire-products.com.sg

MAGUIRE ITALIA SRL
Via Cile, 14
35127 Padova
WŁOCHY
TEL +39 049 970 5429
FAX +39 049 971 1838
Email: italia@maguire-europe.com